4.6 Article

Flow Characteristics of Heat and Mass for Nanofluid under Different Operating Temperatures over Wedge and Plate

Journal

MICROMACHINES
Volume 13, Issue 12, Pages -

Publisher

MDPI
DOI: 10.3390/mi13122080

Keywords

nanofluid; flow characteristics; temperature-dependent thermophysical properties; metallic oxides and carbon-nanostructure

Ask authors/readers for more resources

This study establishes a theoretical model for the thermophysical properties of nanofluids based on experimental data, and applies it to the study of flow characteristics on both plates and wedges. The results show that, under the same conditions, flow over plates leads to larger changes in velocity and temperature profiles compared to flow over wedges.
Background and Purpose: Nanofluids are a new class of heat transfer fluids that are used for different heat transfer applications. The transport characteristics of these fluids not only depend upon flow conditions but also strongly depend on operating temperature. In respect of these facts, the properties of these fluids are modified to measure the temperature effects and used in the governing equations to see the heat and mass flow behavior. Design of Model: Consider the nanofluids which are synthesized by dispersing metallic oxides (SiO2, Al2O3), carbon nanostructures (PEG-TGr, PEG-GnP), and nanoparticles in deionized water (DIW), with (0.025-0.1%) particle concentration over (30-50 degrees C) temperature range. The thermophysical properties of these fluids are modeled theoretically with the help of experimental data as a function of a temperature and volume fraction. These models are further used in transport equations for fluid flow over both wedge and plate. To get the solution, the equations are simplified in the shape of ordinary differential equations by applying the boundary layer and similarity transformations and then solved by the RK method. Results: The solution of the governing equation is found in the form of velocity and temperature expressions for both geometries and displayed graphically for discussion. Moreover, momentum and thermal boundary layer thicknesses, displacement, momentum thicknesses, the coefficient of skin friction, and Nusselt number are calculated numerically in tabular form. Finding: The maximum reduction and enhancement in velocity and temperature profile is found in the case of flow over the plate as compared to the wedge. The boundary layer parameters are increased in the case of flow over the plate than the wedge.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available