4.5 Article

AFM-based tribological study of nanopatterned surfaces: the influence of contact area instabilities

Journal

JOURNAL OF PHYSICS-CONDENSED MATTER
Volume 28, Issue 13, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0953-8984/28/13/134008

Keywords

nanopatterning; AFM; coefficient of friction; adhesion; contact area; hydrophobicity

Funding

  1. Centro Interdipartimentale per la Ricerca Applicata e i Servizi nel settore della Meccanica Avanzata e della Motoristica-INTERMECH MO.RE.
  2. Regione Emilia Romagna-Italy
  3. COST action [MP1303]

Ask authors/readers for more resources

Although the importance of morphology on the tribological properties of surfaces has long been proved, an exhaustive understanding of nanopatterning effects is still lacking due to the difficulty in both fabricating 'really nano-' structures and detecting their tribological properties. In the present work we show how the probe-surface contact area can be a critical parameter due to its remarkable local variability, making a correct interpretation of the data very difficult in the case of extremely small nanofeatures. Regular arrays of parallel 1D straight nanoprotrusions were fabricated by means of a low-dose focused ion beam, taking advantage of the amorphization-related swelling effect. The tribological properties of the patterns were detected in the presence of air and in vacuum (dry ambient) by atomic force microscopy. We have introduced a novel procedure and data analysis to reduce the uncertainties related to contact instabilities. The real time estimation of the radius of curvature of the contacting asperity enables us to study the dependence of the tribological properties of the patterns from their geometrical characteristics. The effect of the patterns on both adhesion and the coefficient of friction strongly depends on the contact area, which is linked to the local radius of curvature of the probe. However, a detectable hydrophobic character induced on the hydrophilic native SiO2 has been observed as well. The results suggest a scenario for capillary formation on the patterns.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available