4.4 Article

Response of stem cells from different origins to biphasic calcium phosphate bioceramics

Journal

CELL AND TISSUE RESEARCH
Volume 361, Issue 2, Pages 477-495

Publisher

SPRINGER
DOI: 10.1007/s00441-015-2116-9

Keywords

Hydroxyapatite; beta-tricalcium phosphate; Mesenchymal stem cells; Adipose-derived stem cells; Dental pulp stem cells

Categories

Funding

  1. EINCO Biomaterial Ltda (Belo Horizonte, Minas Gerais, Brazil)
  2. CAPES (Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior), Brazil

Ask authors/readers for more resources

Biphasic calcium phosphate (BCP) bioceramics have been successfully applied in a broad variety of presentation forms and with different ratios of hydroxyapatite (HA) and beta-tricalcium phosphate (beta-TCP). BCPs have been loaded with stem cells from different origins for bone tissue engineering purposes, but evidence of stem cell behavior on different compositions (various HA/beta-TCP ratios) and physical features of BCPs is limited. We compared the adhesion, proliferation, viability and osteogenic potential of human mesenchymal stem cells (MSCs) on granular BCPs with equal HA/beta-TCP ratio of diverse particle sizes and on porous blocks which had different chemical compositions. In addition, the osteogenic differentiation of MSCs was compared to adiposederived (ADSC) and dental pulp (DPSC) stem cells, as well as to pre-osteoblasts on a particulate BCP. MSCs growing on granular BCPs demonstrated increased number as compared to MSCs growing on blocks. Cells proliferated to a greater extent on small granular BCPs, while large granular BCPs and blocks promoted cell differentiation. Surprisingly, the expression of genes involved in osteogenesis was upregulated in MSCs on bioceramics in basal medium which indicates that BCPs may have osteoinductive potential. This was confirmed with the upregulation of osteochondrogenic markers, at different time points, when stem cells from various tissues were grown on the BCP. This study demonstrates that BCPs, depending on their physical features and chemical composition, modulate stem cell behavior, and that stem cells from different origins are inherently distinct in their gene expression profile and can be triggered toward osteochondrogenic fate by BCPs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available