4.6 Article

Influence of poly(vinyl alcohol)/poly(N-vinyl-2-pyrrolidone) polymer matrix composition on the bonding environment and characteristics of Ag nanoparticles produced by gamma irradiation

Journal

RADIATION PHYSICS AND CHEMISTRY
Volume 202, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.radphyschem.2022.110564

Keywords

Gamma irradiation; Ag-hydrogel; Lattice parameters; Interface stress; Dislocation density; Charge transfer

Ask authors/readers for more resources

A series of silver nanoparticle-polymer hydrogel nanocomposites were synthesized to examine the matrix's impact on properties of silver nanocrystals important for strain engineering in functional materials. Various characterization techniques were used to analyze the structural parameters and cluster size effects of the nanocomposites. The nanocomposites also showed significant antibacterial potential.
A series of silver nanoparticles (AgNPs)-poly(vinyl alcohol)/poly(N-vinyl-2-pyrrolidone) (PVA/PVP) hydrogel nanocomposites were synthesized by gamma irradiation to examine the matrix's impact on properties of Ag nanocrystals important for strain engineering in functional materials. SEM analysis and the swelling studies revealed nanocomposite morphology and fluid transport properties. UV-Vis absorption characterization of AgNPs has enabled an understanding of the cluster size effects. The gel content indicated inter-crosslinking of the two components of the polymer matrix, especially for equivalent (1:1) PVA/PVP ratio, affecting the investigated AgNPs structural parameters. The lattice parameters and the interface stress, analyzed using XRD, have the lowest negative magnitude from the bulk lattice constant for the PVA/PVP (2:1) and (1:1) ratio. The lowest values of the lattice strain and dislocation density, as mutually dependent parameters, are obtained in AgNPs embedded in a PVA/PVP (2:1) and (1:1) matrix. The XPS and FTIR data show a positive shift of the O1s and a redshift of the CO - Ag vibration band indicating charge transfer to the vacant orbital of Ag nanocrystals. The N atoms of the pyrrolidine ring are not directly involved in the electronic interactions, but over the p-pi conjugation with carbonyl O. In addition, the tested Ag-(PVA/PVP) hydrogel nanocomposites showed significant potential as a broad-spectrum antibacterial material.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Chemistry, Applied

Stimuli-responsive copolymeric hydrogels based on oligo(ethylene glycol) dimethacrylate for biomedical applications: An optimisation study of pH and thermoresponsive behaviour

M. Krstic, Z. Rogic Miladinovic, T. Barudzija, A. Mladenovic, E. Suljovrujic

Summary: Di(meth)acrylate (D(M)A) systems with pendant oligo(ethylene glycol) (OEG) chains are promising biomedical candidates. By copolymerization with 2-hydroxyethyl methacrylate (HEMA), volume phase transition (VPT) can be shifted closer to physiological temperatures, thus widening the application of these thermoresponsive materials for biomedical purposes.

REACTIVE & FUNCTIONAL POLYMERS (2022)

Article Chemistry, Physical

PtAu Nanoparticles Supported by Reduced Graphene Oxide as a Highly Active Catalyst for Hydrogen Evolution

Lazar Rakocevic, Ivana Stojkovic Simatovic, Aleksandar Maksic, Vladimir Rajic, Svetlana Strbac, Irina Srejic

Summary: PtAu/rGO nanoparticles deposited on graphene support demonstrated remarkable catalytic activity for hydrogen evolution reaction in sulfuric acid solution, with good stability and durability.

CATALYSTS (2022)

Article Materials Science, Textiles

Antimicrobial Nanocomposites Based on Oxidized Cotton Fabric and in situ Biosynthesized Copper Oxides Nanostructures Using Bearberry Leaves Extract

Ana Krkobabic, Darka Markovic, Aleksandar Kovacevic, Vanja Tadic, Marija Radoicic, Tatjana Barudzija, Tatjana Ilic-Tomic, Maja Radetic

Summary: The aim of this study was to develop antimicrobial nanocomposite textile material using bearberry leaves extract as a green reducing agent to synthesize copper-based nanostructures on oxidized cotton fabric, which showed excellent antibacterial activity.

FIBERS AND POLYMERS (2022)

Article Nanoscience & Nanotechnology

Optical properties of copper helical nanostructures: the effect of thickness on the SPR peak position

J. Potocnik, N. Bozinovic, M. Novakovic, T. Barudzija, M. Nenadovic, M. Popovic

Summary: This study investigates the impact of thickness on the structural and optical properties of copper helical nanostructures. It was found that the deposited structures are porous with nanometer-sized crystallites oriented along (111) planes, and the diameter of the helices increases with thickness. Optical analysis revealed that the dielectric function of copper structures is greatly influenced by film thickness, with the surface plasmon resonance peak shifting as the thickness increases.

NANOTECHNOLOGY (2022)

Article Chemistry, Physical

Improvement of antibacterial activity of Ag-poly(vinyl-alcohol)/chitosan hydrogel by optimizing the procedure of radiolytic synthesis

Jelena Krstic, Aleksandra Radosavljevic, Jelena Spasojevic, Nikolina Nikolic, Uros Jovanovic, Nadica Abazovic, Zorica Kacarevic-Popovic

Summary: Hydrogels consisting of radiation-degraded chitosan, poly(vinyl alcohol), and Ag nano-filler were synthesized using two-stage and single-stage procedures. The study found that hydrogels synthesized using the single-stage procedure exhibited stronger antibacterial activity, possibly due to the higher mobility of radiation-modified chitosan in the network.

RADIATION PHYSICS AND CHEMISTRY (2022)

Article Materials Science, Multidisciplinary

Influence of Rare Earth Oxide Concentration on Electrochemical Co-Deposition of Nd and Pr from NdF3-PrF3-LiF Based Melts

Vesna S. Cvetkovic, Dominic Feldhaus, Natasa M. Vukicevic, Ksenija Milicevic-Neumann, Tanja S. Barudzija, Bernd Friedrich, Jovan N. Jovicevic

Summary: This study investigated the impact of rare earth oxide (REO) concentration on the deposition process and selective recovery of the metal being deposited in a molten fluoride salt system. By constructing a phase diagram and using different deposition techniques, co-deposition of neodymium and praseodymium was achieved, leading to higher co-deposition rates and a more effective deposition process.

METALS (2022)

Article Materials Science, Multidisciplinary

Evaluation of the antibacterial effectiveness of novel copper/polypyrrole nanocomposite

Dijana Masojevic, Una Stamenovic, Mojca Otonicar, Sladana Davidovic, Sreco Skapin, Tanja Barudzijaa, Vesna Vodnik

Summary: This study presents a novel antibacterial agent based on the combination of copper nanoparticles (CuNPs) and poly-pyrrole (PPy). The Cu/PPy nanocomposite, characterized by spherical CuNPs around 25 nm in diameter uniformly dispersed throughout a granular PPy matrix, was synthesized using a straightforward in situ polymerization method in water. The antibacterial activity of Cu/PPy against E. coli and S. aureus was determined, demonstrating the synergistic engagement of CuNPs and PPy. Low concentrations of Cu/PPy, such as 2 ppm with 9.45 wt% Cu content, showed significant antibacterial efficacy, indicating its potential as a safe and environmentally acceptable antibacterial agent.

MATERIALS LETTERS (2023)

Article Materials Science, Ceramics

Effect of Bi3+co-doping on the up-converting and photocatalytic properties of SrGd2O4:Yb3+/Ho3+ phase

Tijana Stamenkovic, Ivana Dinic, Marina Vukovic, Nadezda Radmilovic, Tanja Barudzija, Milos Tomic, Lidija Mancic, Vesna Lojpur

Summary: In this study, strontium-gadolinium-oxide (SrGd2O4) samples doped with different Yb3+ concentrations and co-doped with Bi3+ were prepared. The inclusion of Bi3+ improved the photoluminescent properties, but decreased the photocatalytic efficiency of the samples.

CERAMICS INTERNATIONAL (2023)

Article Chemistry, Physical

Comparative dosimetry of an epoxy resin pediatric head phantom and PMMA phantom for CT imaging

A. Khallouqi, A. Halimi, O. El Rhazouani

Summary: A pediatric head phantom made of epoxy resin was used to evaluate radiation exposure in CT scans. The phantom demonstrated dosimetric properties comparable to commercially available phantoms, making it a practical and economical option for assessing radiation dose in children.

RADIATION PHYSICS AND CHEMISTRY (2024)

Article Chemistry, Physical

A study of 226Ra concentration and radon exhalation rates in different geopolymer cement samples using CR-39 solid state nuclear track detector

M. Y. Shoeib, Doaa A. Ahmed, A. F. Abd-Elraheem

Summary: The research aims to measure and analyze the levels of radon concentration, radium concentration, and radon exhalation rates in geopolymer cement mixes, and assess their impact on indoor air quality. Results indicate that geopolymer cement materials are safe for use in construction, except for specific mixes.

RADIATION PHYSICS AND CHEMISTRY (2024)

Article Chemistry, Physical

Radiolysis of water by α- and β-particles from spent nuclear fuel

M. J. Leotlela

Summary: This article presents the results of radiochemical events/processes that occur when water is exposed to ionising radiation of charged particles (beta and alpha-particles). The idea of cogeneration becomes even more lucrative if we consider that hydrogen energy generation is clean (also known as green energy) because of its insignificant contribution to environmental pollution. These results supplement the fluctuation in effective dose theory/hypothesis of a previous study on time-dependent variations in the radiological health impact of an interim SNFS facility presented in 2021 (Leotlela, 2021).

RADIATION PHYSICS AND CHEMISTRY (2024)

Article Chemistry, Physical

A simulation study on neutron radiation shielding in space conditions

Vyacheslav Ivanovich Pavlenko, Roman Vladimirovich Sidelnikov, Vitaly Valerievich Kashibadze, Mikhail Igorevich Dobynde, Dmitry Alexandrovich Kartashov, Vyacheslav Alexandrovich Shurshakov

Summary: This work explores the possibility of using a polymer composite to protect against neutron radiation in space conditions. The study shows that the proposed polymer composite has high structural properties necessary for use in space. Monte Carlo simulation is used to evaluate the neutron radiation passage through the material. The results demonstrate that the protective layer made of the polymer composite is thinner and more suitable for spacecraft, which is crucial due to limited space on board.

RADIATION PHYSICS AND CHEMISTRY (2024)

Article Chemistry, Physical

A multi-phase investigation to understand the function of lanthanum and neodymium in the zirconia ceramics' synthesis, structural, and gamma-ray protective ability

Islam G. Alhindawy, M. I. Sayyed, Dalal Abdullah Aloraini, Aljawhara H. Almuqrin, Mohammad S. Alomar, Gaber A. Elawadi, K. A. Mahmoud

Summary: This study investigated the effects of Neodymium (III) nitrate hexahydrate and lanthanum nitrate hexahydrate on the structural and radiation shielding properties of zircon mineral, and a new La/Nb-doped ZrO2 nanocomposite was fabricated. Experimental techniques such as energy-dispersive X-ray, scanning electron microscope, transmission electron microscopy, and X-ray diffraction pattern were used to analyze the structure and composition of the fabricated nanocomposites. Monte Carlo simulation was employed to evaluate the gamma-ray shielding properties. The results showed that the fabricated composites had good shielding characteristics, with a shielding capacity of 30-50% compared to pure lead in the intermediate energy range of 0.244-2.506 MeV.

RADIATION PHYSICS AND CHEMISTRY (2024)

Article Chemistry, Physical

Radiation dose to patients and public exposure in cardiac rest and stress single photon emission computed tomography examinations

Hassan Salah, Mohammed Alkhorayef, Layal Jambi, Mohammed Almuwanis, Abdelmoneim Sulieman

Summary: Cardiovascular nuclear medicine imaging examinations expose patients to high doses of ionizing radiation. This study assessed the radiation doses and public exposure in cardiac rest and stress SPECT scans. The effective dose from cardiac stress was higher than previous studies, which may be influenced by clinical indication imaging protocols and radiation safety measures.

RADIATION PHYSICS AND CHEMISTRY (2024)

Article Chemistry, Physical

Comparison of x-ray spectra and mean glandular dose estimations in computed radiography systems for mammography: Simulations versus measurements

Leandro Barbosa da Silveira Gatto, Delson Braz, Leonardo Pacifico, Paulo Travassos, Luis Alexandre Goncalves Magalhaes

Summary: This study evaluated the mean glandular dose (MGD) in mammography using a computed radiography (CR) system with a solid-state detector. Irradiations and simulations were conducted to determine the MGD and spectra for the same conditions. The results showed that the glandular dose was below the acceptable levels and the spectra were mostly in accordance with the literature.

RADIATION PHYSICS AND CHEMISTRY (2024)

Article Chemistry, Physical

Diagnostic reference levels for common pediatric computed tomography studies: A retrospective study.

Mawya Khafaji, Rashid Barnawi, Salma Amoudi, Hassan Gabbani, Rayan Alhazmi, Rayan Ahyad, Khalid Alsafi, Khuld Saeedi, Hassan Salah, Nissren Tamam, David Bradley, Sarah Albahiti, Abdelmoneim Sulieman

Summary: This study aimed to calculate typical values for common pediatric studies at King Abdulaziz University Hospital and compare them with other studies. The results showed that radiation dose levels in pediatric CT examinations were generally lower compared to other studies.

RADIATION PHYSICS AND CHEMISTRY (2024)

Article Chemistry, Physical

Computation of medical radioisotopes cross section using level density models

Faisal Almisned, Iskender Akkurt, Nurdan Karpuz

Summary: In this study, cross sections of medical radioisotopes were calculated using level density models. The results were compared with experimental data and it was found that the GSM level density models generally yielded consistent conclusions.

RADIATION PHYSICS AND CHEMISTRY (2024)

Article Chemistry, Physical

The effect of gamma irradiation treatment on quinoa flour: Quantification of saponin, phytic acid, antioxidant activity, and oxidative properties

Shokufeh Saeid, Neda Mollakhalili-meybodi, Fateme Akrami Mohajeri, Farzan Madadizadeh, Elham Khalili Sadrabad

Summary: This study found that gamma irradiation significantly reduces the saponin and phytic acid content of quinoa. At a dose of 2.5 kGy, it can effectively reduce saponin and phytic acid without significantly damaging the antioxidant compounds.

RADIATION PHYSICS AND CHEMISTRY (2024)

Article Chemistry, Physical

Biocompatible and antimicrobial chitosan/PVP/PEO/PAA/AgNP composite hydrogels synthesized by e-beam cross-linking

Maria Demeter, Ion Calina, Anca Scarisoreanu, Valentina Mitran, Marcela Popa, Anisoara Cimpean, Mariana Carmen Chifiriuc, Marin Micutz, Elena Matei, Bogdana Mitu

Summary: Novel biocompatible composite hydrogels with good elastic and antimicrobial properties were synthesized by e-beam cross-linking using chitosan, water-soluble polymers, and silver nanoparticles (AgNP). The composite hydrogels showed high stability, absorption capability specific to infected wounds, and biocompatibility. The antimicrobial activity was influenced by the amount of AgNP and cross-linking degree, with significant inhibition against Gram-negative bacteria.

RADIATION PHYSICS AND CHEMISTRY (2024)

Article Chemistry, Physical

Radiological hazard assessment for human from nuclear power plant effluent released under normal operation scenario (hypothetical case study)

Anuor AT. Ayoub, Yushou Song, Mamoun IA. Sagiroun

Summary: This paper presents an assessment of the radiological hazard for humans from nuclear power plant effluent released into a river under normal operation scenarios. The study concludes that the radiological hazard from this effluent is minimal and within acceptable limits according to international standards. It also highlights the potential hazards related to the higher concentration of 137Cs in sediments over time.

RADIATION PHYSICS AND CHEMISTRY (2024)

Article Chemistry, Physical

Electron impact ionization of prebiotic interstellar molecules

Irabati Chakraborty, Nidhi Sinha, Bobby Antony

Summary: This article investigates the electron impact ionization of prebiotic molecules within the interstellar medium. By calculating the electron impact ionization cross section, the study provides insights into the chemistry of these molecules and their interaction with electrons, which play a vital role in the emergence of life's essential building blocks.

RADIATION PHYSICS AND CHEMISTRY (2024)

Article Chemistry, Physical

Gamma-ray shielding analysis on natural rubber composites fortified with barium tungstate (BaWO4)

C. V. Vishnu, Antony Joseph

Summary: This study investigated the gamma-ray shielding properties of composite materials made from natural rubber with different proportions of Barium Tungstate. The addition of Barium Tungstate significantly improved the characteristics of gamma radiation shielding. The experimental measurements showed good agreement with theoretical calculations obtained from simulation results.

RADIATION PHYSICS AND CHEMISTRY (2024)

Article Chemistry, Physical

Synergizing electrical, mechanical, and radiation shielding properties of dendritic copper filled epoxy polymer composites

Derya Mutlu, Idris Karagoz, Harun Sepetcioglu, Urkiye Akar Tarim, Orhan Gurler

Summary: This study examined the properties of epoxy composites with dendritic copper particles and found that the addition of copper particles improved the electrical conductivity and mechanical properties of the composites. The glass transition temperature of the composites could be adjusted by varying the copper particle ratio. The study also evaluated the shielding properties of epoxy-based composites against gamma radiation and found that the addition of copper particles significantly altered the microstructure and mechanical properties of the composites.

RADIATION PHYSICS AND CHEMISTRY (2024)