4.7 Article

The constitutive behavior and dissociation effect of hydrate-bearing sediment within a granular thermodynamic framework

Journal

OCEAN ENGINEERING
Volume 268, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.oceaneng.2022.113408

Keywords

Granular thermodynamics; Hydrate dissociation; Bonding stress; Dilation; Loading path

Ask authors/readers for more resources

A multiphase constitutive model of hydrate-bearing sediment is established within a granular thermodynamic framework, considering the energy dissipation caused by hydrate dissociation and granular rearrangement at the micro level. This model captures the complex behavior of the sediment by incorporating the nonlinear expression of bonding stress, considering the relative velocities of the gas and liquid phases, and introducing the coupling effect of heat conduction.
Considering the energy dissipation caused by hydrate dissociation and granular rearrangement at the micro level, a multiphase constitutive model of hydrate-bearing sediment is established within a granular thermodynamic framework. This model incorporates the nonlinear expression of bonding stress into the elastic energy density function, considers the relative velocities of the gas and liquid phases in terms of the solid phase in the dissipative force system, and introduces the coupling effect of heat conduction into the migration coefficient matrix to capture the complex behavior of the sediment. Defining the migration coefficient matrix and elastic energy function, the effective stress is obtained and is suitable for constant hydrate saturation and hydrate dissociation conditions. Dilatancy equations are improved by considering the effect of compactness, bonding stress, and hydrate saturation. Meanwhile, the calculation method of bonding stress is suitable for both strong and weak cementation conditions. The deduced model is validated against the test results conducted on natural and synthetic samples under different hydrate saturations, sediment porosities, and hydrate habits and can effectively capture the strain hardening and softening as well as the dilatancy properties of the sediments and the loading path effect.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available