4.8 Article

High-Throughput DFT-Based Discovery of Next Generation Two- Dimensional (2D) Superconductors

Journal

NANO LETTERS
Volume 23, Issue 3, Pages 969-978

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.nanolett.2c04420

Keywords

2D superconductivity; density functional theory; high-throughput; materials discovery

Ask authors/readers for more resources

High-throughput DFT calculations were employed to systematically search for conventional superconductors, including two-dimensional (2D) materials. Over 1000 2D materials in the JARVIS-DFT database were screened, and electron-phonon coupling calculations were performed to determine the superconducting transition temperature (Tc) for 165 materials. Among them, 34 dynamically stable structures with Tc above 5 K were identified, including previously unreported Mg2B4N2 (Tc = 21.8 K). Experimental measurements of selected layered superconductors were also conducted and discussed within the context of DFT results. The workflow outcomes provide a roadmap for future computational and experimental studies of new and emerging 2D superconductors.
High-throughput density functional theory (DFT) calculations allow for a systematic search for conventional superconductors. With the recent interest in two-dimensional (2D) superconductors, we used a high-throughput workflow to screen over 1000 2D materials in the JARVIS-DFT database and performed electron-phonon coupling calculations, using the McMillan-Allen- Dynes formula to calculate the superconducting transition temperature (Tc) for 165 of them. Of these 165 materials, we identify 34 dynamically stable structures with transition temperatures above 5 K, including materials such as W2N3, NbO2, ZrBrO, TiClO, NaSn2S4, Mg2B4C2, and the previously unreported Mg2B4N2 (Tc = 21.8 K). Finally, we performed experiments to determine the Tc of selected layered superconductors (2H-NbSe2, 2H-NbS2, ZrSiS, FeSe) and discuss the measured results within the context of our DFT results. We aim that the outcome of this workflow can guide future computational and experimental studies of new and emerging 2D superconductors by providing a roadmap of high-throughput DFT data.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available