4.1 Review

Understanding workers' exposure: Systematic review and data-analysis of emission potential for NOAA

Journal

JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE
Volume 14, Issue 5, Pages 349-359

Publisher

TAYLOR & FRANCIS INC
DOI: 10.1080/15459624.2016.1252843

Keywords

Data-analyses; emission potential; NOAA

Funding

  1. NanoNextNL, a micro and nanotechnology consortium of the Government of the Netherlands
  2. Dutch Ministry of Social Affairs and Employment

Ask authors/readers for more resources

Exposure assessment for nano-objects, and their aggregates and agglomerates (NOAA), has evolved from explorative research toward more comprehensive exposure assessment, providing data to further develop currently used conservative control banding (CB) tools for risk assessment. This study aims to provide an overview of current knowledge on emission potential of NOAA across the occupational life cycle stages by a systematic review and subsequently use the results in a data analysis. Relevant parameters that influence emission were collected from peer-reviewed literature with a focus on the four source domains (SD) in the source-receptor conceptual framework for NOAA. To make the reviewed exposure data comparable, we applied an approach to normalize for workplace circumstances and measurement location, resulting in comparable surrogate emission levels. Finally, descriptive statistics were performed. During the synthesis of nanoparticles (SD1), mechanical reduction and gas phase synthesis resulted in the highest emission compared to wet chemistry and chemical vapor condensation. For the handling and transfer of bulk manufactured nanomaterial powders (SD2) the emission could be differentiated for five activity classes: (1) harvesting; (2) dumping; (3); mixing; (4) cleaning of a reactor; and (5) transferring. Additionally, SD2 was subdivided by the handled amount with cleaning further subdivided by energy level. Harvesting and dumping resulted in the highest emissions. Regarding processes with liquids (SD3b), it was possible to distinguish emissions for spraying (propellant gas, (high) pressure and pump), sonication and brushing/rolling. The highest emissions observed in SD3b were for propellant gas spraying and pressure spraying. The highest emissions for the handling of nano-articles (SD4) were found to nano-sized particles (including NOAA) for grinding. This study provides a valuable overview of emission assessments performed in the workplace during the occupational handling of NOAA. Analyses were made per source domain to derive emission levels which can be used for models to quantitatively predict the exposure.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available