4.7 Article

Palmitic acid interferes with energy metabolism balance by adversely switching the SIRT1-CD36-fatty acid pathway to the PKC zeta-GLUT4-glucose pathway in cardiomyoblasts

Journal

JOURNAL OF NUTRITIONAL BIOCHEMISTRY
Volume 31, Issue -, Pages 137-149

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.jnutbio.2016.01.007

Keywords

SIRT1-CD36-fatty acid pathway; PKC zeta-GLUT4-glucose pathway; Energy metabolism; Cardiomyoblast apoptosis; Palmitic acid

Funding

  1. Taiwan Ministry of Health and Welfare Clinical Trial and Research Center of Excellence [MOHW105-TDU-B-212-133019]

Ask authors/readers for more resources

Metabolic regulation is inextricably linked with cardiac function. Fatty acid metabolism is a significant mechanism for creating energy for the heart. However, cardiomyocytes are able to switch the fatty acids or glucose, depending on different situations, such as ischemia or anoxia. Lipotoxicity in obesity causes impairments in energy metabolism and apoptosis in cardiomyocytes. We utilized the treatment of H9c2 cardiomyoblast cells palmitic acid (PA) as a model for hyperlipidemia to investigate the signaling mechanisms involved in these processes. Our results show PA induces time- and dose-dependent lipotoxicity in H9c2 cells. Moreover, PA enhances cluster of differentiation 36 (CD36) and reduces glucose transporter type 4 (GLUT4) pathway protein levels following a short period of treatment, but cells switch from CD36 back to the GLUT4 pathway after during long-term exposure to PA. As sirtuin 1 (SIRT1) and protein kinase C zeta (PKC zeta) play important roles in CD36 and GLUT4 translocation, we used the SIRT1 activator resveratrol and si-PKC zeta to identify the switches in metabolism. Although PA reduced CD36 and increased GLUT4 metabolic pathway proteins, when we pretreated cells with resveratrol to activate SIRT1 or transfected si-PKC zeta, both were able to significantly increase CD36 metabolic pathway proteins and reduce GLUT4 pathway proteins. High-fat diets affect energy metabolism pathways in both normal and aging rats and involve switching the energy source from the CD36 pathway to GLUT4. In conclusion, PA and high-fat diets cause lipotoxicity in vivo and in vitro and adversely switch the energy source from the CD36 pathway to the GLUT4 pathway. (C) 2016 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available