4.7 Article

Associations Between Somatic Mutations and Metabolic Imaging Phenotypes in Non-Small Cell Lung Cancer

Journal

JOURNAL OF NUCLEAR MEDICINE
Volume 58, Issue 4, Pages 569-576

Publisher

SOC NUCLEAR MEDICINE INC
DOI: 10.2967/jnumed.116.181826

Keywords

radiomics; somatic mutation; PET imaging; phenotype

Funding

  1. National Institute of Health [U01CA190234, U24CA194354]
  2. American Association of Physicists in Medicine

Ask authors/readers for more resources

PET-based radiomics have been used to noninvasively quantify the metabolic tumor phenotypes; however, little is known about the relationship between these phenotypes and underlying somatic mutations. This study assessed the association and predictive power of F-18-FDG PET-based radiomic features for somatic mutations in non-small cell lung cancer patients. Methods: Three hundred forty-eight non-small cell lung cancer patients underwent diagnostic F-18-FDG PET scans and were tested for genetic mutations. Thirteen percent (44/348) and 28% (96/348) of patients were found to harbor epidermal growth factor receptor (EGFR) or Kristen rat sarcoma viral (KRAS) mutations, respectively. We evaluated 21 imaging features: 19 independent radiomic features quantifying phenotypic traits and 2 conventional features (metabolic tumor volume and maximum SUV). The association between imaging features and mutation status (e.g., EGFR-positive [EGFR+] vs. EGFR-negative) was assessed using the Wilcoxon rank-sum test. The ability of each imaging feature to predict mutation status was evaluated by the area under the receiver operating curve (AUC) and its significance was compared with a random guess (AUC = 0.5) using the Noether test. All P values were corrected for multiple hypothesis testing by controlling the false-discovery rate (FDRwilcoxon, FDRNoether) with a significance threshold of 10%. Results: Eight radiomic features and both conventional features were significantly associated with EGFR mutation status (FDRwilcoxon = 0.01-0.10). One radiomic feature (normalized inverse difference moment) outperformed all other features in predicting EGFR mutation status (EGFR+ vs. EGFR-negative, AUC = 0.67, FDRNoether = 0.0032), as well as differentiating between KRAS-positive and EGFR+ (AUC = 0.65, FDRNoether = 0.05). None of the features was associated with or predictive of KRAS mutation status (KRAS-positive vs. KRAS-negative, AUC = 0.50-0.54). Conclusion: Our results indicate that EGFR mutations may drive different metabolic tumor phenotypes that are captured in PET images, whereas KRAS-mutated tumors do not. This proof-of-concept study sheds light on genotype-phenotype interactions, using radiomics to capture and describe the phenotype, and may have potential for developing noninvasive imaging biomarkers for somatic mutations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available