4.7 Article

Explainable diabetes classification using hybrid Bayesian-optimized TabNet architecture

Journal

COMPUTERS IN BIOLOGY AND MEDICINE
Volume 151, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.compbiomed.2022.106178

Keywords

Attention mechanism; Bayesian optimization; ?Black-box? models; Diabetes classification; eXplainable artificial intelligence (XAI); Interpretability; TabNet

Ask authors/readers for more resources

This article introduces a method for early-stage detection of diabetes using an interpretable TabNet model, and utilizes explainable artificial intelligence tools such as LIME and SHAP for model interpretation. The proposed model achieves high accuracy on two datasets and identifies influential attributes for diabetes classification.
Diabetes is a deadly chronic disease that occurs when the pancreas is not able to produce ample insulin or when the body cannot use insulin effectively. If undetected, it may lead to a host of health complications. Hence, accurate and explainable early-stage detection of diabetes is essential for the proper administration of treatment options in leading a healthy and productive life. For this, we developed an interpretable TabNet model tuned via Bayesian optimization (BO). To achieve model-specific interpretability, the attention mechanism of TabNet ar-chitecture was used, which offered the local and global model explanations on the influence of the attributes on the outcomes. The model was further explained locally and globally using more robust model-agnostic LIME and SHAP eXplainable Artificial Intelligence (XAI) tools. The proposed model outperformed all benchmarked models by obtaining high accuracy of 92.2% and 99.4% using the Pima Indians diabetes dataset (PIDD) and the early -stage diabetes risk prediction dataset (ESDRPD), respectively. Based on the XAI results, it was clear that the most influential attribute for diabetes classification using PIDD and ESDRPD were Insulin and Polyuria, respectively. The feature importance values registered for insulin was 0.301 (PIDD) and for polyuria 0.206 was registered (ESDRPD). The high accuracy and ancillary interpretability of our objective model is expected to increase end -users trust and confidence in early-stage detection of diabetes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available