4.4 Review

Kinase-KCC2 coupling: Cl- rheostasis, disease susceptibility, therapeutic target

Journal

JOURNAL OF NEUROPHYSIOLOGY
Volume 115, Issue 1, Pages 8-18

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/jn.00865.2015

Keywords

epilepsy; hyperexcitability; inhibitory synaptic transmission; K-Cl cotransport; WNK kinases

Funding

  1. Harvard-MIT Neuroscience Grant
  2. Manton Center for Orphan Disease Research at Harvard Medical School
  3. Boston Children's Hospital
  4. National Institutes of Health [GM-074771, DK-093501]
  5. NATIONAL INSTITUTE OF DIABETES AND DIGESTIVE AND KIDNEY DISEASES [R01DK093501] Funding Source: NIH RePORTER
  6. NATIONAL INSTITUTE OF GENERAL MEDICAL SCIENCES [R01GM074771] Funding Source: NIH RePORTER

Ask authors/readers for more resources

The intracellular concentration of Cl- ([Cl-](i)) in neurons is a highly regulated variable that is established and modulated by the finely tuned activity of the KCC2 cotransporter. Despite the importance of KCC2 for neurophysiology and its role in multiple neuropsychiatric diseases, our knowledge of the transporter's regulatory mechanisms is incomplete. Recent studies suggest that the phosphorylation state of KCC2 at specific residues in its cytoplasmic COOH terminus, such as Ser940 and Thr906/Thr1007, encodes discrete levels of transporter activity that elicit graded changes in neuronal Cl- extrusion to modulate the strength of synaptic inhibition via Cl--permeable GABA(A) receptors. In this review, we propose that the functional and physical coupling of KCC2 to Cl--sensitive kinase(s), such as the WNK1-SPAK kinase complex, constitutes a molecular rheostat that regulates [Cl-](i) and thereby influences the functional plasticity of GABA. The rapid reversibility of (de) phosphorylation facilitates regulatory precision, and multisite phosphorylation allows for the control of KCC2 activity by different inputs via distinct or partially overlapping upstream signaling cascades that may become more or less important depending on the physiological context. While this adaptation mechanism is highly suited to maintaining homeostasis, its adjustable set points may render it vulnerable to perturbation and dysregulation. Finally, we suggest that pharmacological modulation of this kinase-KCC2 rheostat might be a particularly efficacious strategy to enhance Cl- extrusion and therapeutically restore GABA inhibition.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available