4.0 Article

Immediate-early alcohol-responsive miRNA expression in Drosophila

Journal

JOURNAL OF NEUROGENETICS
Volume 30, Issue 3-4, Pages 195-204

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.1080/01677063.2016.1252764

Keywords

Alcoholism; neuroadaptation; miRNA-seq; genomics; miR-6; miR-310

Funding

  1. National Institute on Alcohol Abuse and Alcoholism [R21AA023372-01A1]
  2. NATIONAL INSTITUTE ON ALCOHOL ABUSE AND ALCOHOLISM [R21AA023372] Funding Source: NIH RePORTER

Ask authors/readers for more resources

At the core of the changes characteristic of alcoholism are alterations in gene expression in the brain of the addicted individual. These changes are believed to underlie some of the neuroadaptations that promote compulsive drinking. Unfortunately, the mechanisms by which alcohol consumption produces changes in gene expression remain poorly understood. MicroRNAs (miRNAs) have emerged as important regulators of gene expression because they can coordinately modulate the translation efficiency of large sets of specific mRNAs. Here, we investigate the early miRNA responses elicited by an acute sedating dose of alcohol in the Drosophila model organism. In our analysis, we combine the power of next-generation sequencing with Drosophila genetics to identify alcohol-sensitive miRNAs and to functionally test them for a role in modulating alcohol sensitivity. We identified 14 known Drosophila miRNAs, and 13 putative novel miRNAs that respond to an acute sedative exposure to alcohol. Using the GeneSwitch Gal4/UAS system, a subset of these ethanol-responsive miRNAs was functionally tested to determine their individual contribution in modulating ethanol sensitivity. We identified two microRNAs that when overexpressed significantly increased ethanol sensitivity: miR-6 and miR-310. MicroRNA target prediction analysis revealed that the different alcohol-responsive miRNAs target-overlapping sets of mRNAs. Alcoholism is the product of accumulated cellular changes produced by chronic ethanol consumption. Although all of the changes described herein are extremely rapid responses evoked by a single ethanol exposure, understanding the gene expression changes that occur in the first few minutes after ethanol exposure will help us to categorize ethanol responses into those that are near instantaneous and those that are emergent responses produced only by repeated ethanol exposure.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.0
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available