4.8 Article

Protease-Activatable Nanozyme with Photoacoustic and Tumor-Enhanced Magnetic Resonance Imaging for Photothermal Ferroptosis Cancer Therapy

Journal

ADVANCED FUNCTIONAL MATERIALS
Volume 33, Issue 4, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.202209748

Keywords

photoacoustic imaging; photothermal ferroptosis cancer therapy; protease-activatable nanozymes; tumor-enhanced magnetic resonance imaging

Ask authors/readers for more resources

This study presents a novel activatable ferrous nanotheranostics for spatial-temporal control over antitumor ferroptosis responses. The nanotherapeutics can be guided by photoacoustic and magnetic resonance imaging (MRI), and it can effectively induce tumor cell death through photothermal therapy and Fenton reaction. This treatment not only suppresses tumor growth, but also promotes immune response against the tumor.
Despite the promise of ferrotherapy in cancer treatment, current ferrous therapeutics suffer from compromised antitumor ferroptosis efficacy and low specificity for tumors. Herein, a protease-activatable nanozyme (Fe3O4@Cu1.77Se) is reported for photoacoustic and tumor-enhanced magnetic resonance imaging (MRI)-guided second near-IR photothermal ferroptosis cancer therapy. Fe3O4@Cu1.77Se remains stable in physiological conditions, but disintegrates to increase reactive intratumoral ferrous supply for elevated hydroxyl radical generation by Fenton reaction and GSH depletion in response to overexpressed matrix metalloproteinases in tumor microenvironment, leading to amplified ferroptosis of tumor cells as well as enhanced T-2-weighted MRI contrast. Further integration with second near-IR photoirradiation to generate localized heat not only triggers effective photothermal therapy and photoacoustic imaging but more importantly, potentiates Fenton reaction to promote ferroptotic tumor cell death. Such synergism leads to the polarization of tumor-associated macrophage from the tumor-promoting M2 type to the tumor-killing M1 type, and induces the immunogenic cells death of tumor cells, which in turn promotes the maturation of dendritic cells and infiltration of cytotoxic T lymphocytes in tumor, contributing to significant tumor suppression. This study presents a novel activatable ferrous nanotheranostics for spatial-temporal control over antitumor ferroptosis responses.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available