4.5 Review

Shining light on neurosurgery diagnostics using Raman spectroscopy

Journal

JOURNAL OF NEURO-ONCOLOGY
Volume 130, Issue 1, Pages 1-9

Publisher

SPRINGER
DOI: 10.1007/s11060-016-2223-9

Keywords

Diagnostics; Raman spectroscopy; In vivo; Molecular signature; Intraoperative

Funding

  1. NIBIB NIH HHS [R01 EB000741] Funding Source: Medline

Ask authors/readers for more resources

Surgical excision of brain tumors provides a means of cytoreduction and diagnosis while minimizing neurologic deficit and improving overall survival. Despite advances in functional and three-dimensional stereotactic navigation and intraoperative magnetic resonance imaging, delineating tissue in real time with physiological confirmation is challenging. Raman spectroscopy is a promising investigative and diagnostic tool for neurosurgery, which provides rapid, non-destructive molecular characterization in vivo or in vitro for biopsy, margin assessment, or laboratory uses. The Raman Effect occurs when light temporarily changes a bond's polarizability, causing change in the vibrational frequency, with a corresponding change in energy/wavelength of the scattered photon. The recorded inelastic scattering results in a fingerprint or Raman spectrum of the constituent under investigation. The amount, location, and intensity of peaks in the fingerprint vary based on the amount of vibrational bonds in a molecule and their ensemble interactions with each other. Distinct differences between various pathologic conditions are shown as different intensities of the same peak, or shifting of a peak based on the binding conformation. Raman spectroscopy has potential for integration into clinical practice, particularly in distinguishing normal and diseased tissue as an adjunct to standard pathologic diagnosis. Further, development of fiber-optic Raman probes that fit through the instrument port of a standard endoscope now allows researchers and clinicians to utilize spectroscopic information for evaluation of in vivo tissue. This review highlights the need for such an instrument, summarizes neurosurgical Raman work performed to date, and discusses the future applications of neurosurgical Raman spectroscopy.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available