4.2 Article

Catalytic decarboxylation of non-edible oils over three-dimensional, mesoporous silica-supported Pd

Journal

JOURNAL OF MOLECULAR CATALYSIS A-CHEMICAL
Volume 417, Issue -, Pages 126-134

Publisher

ELSEVIER
DOI: 10.1016/j.molcata.2016.03.023

Keywords

Biofuel; Vegetable oil; Deoxygenation; Mesoporous silica; Supported palladium; Diesel-range hydrocarbons

Funding

  1. Network project Catalysts for Sustainable Energy (ECat) [CSC 0117]

Ask authors/readers for more resources

Deoxygenation of fatty acids (oleic and stearic acids) and non-edible oil (jatropha oil) over Pd(1-5 wt%) supported on two structurally different, three-dimensional, mesoporous silica (SBA-12 and SBA-16) catalysts was investigated. Pd/SBA-16 (cubic mesoporous structure with space group Im (3) over barm) showed higher catalytic activity than Pd/SBA-12 (hexagonal mesoporous structure with space group p6(3)/mmc). The influence of reaction parameters like temperature, H-2 pressure and Pd content as well as the nature of the feedstock on catalytic activity and product selectivity was studied. A temperature of above 320 degrees C, reaction time of 5 h and Pd content (on silica surface) of 3 wt% enabled complete conversion of the fatty compounds into diesel-range hydrocarbons. Deoxygenation proceeded through hydrodeoxygenation and decarboxylation mechanisms when a saturated (stearic) acid was used as a feed while it advanced mainly through decarboxylation route when an unsaturated (oleic) acid was employed. Higher surface hydrophobicity and smaller size particles of Pd are the possible causes for the superior catalytic activity of Pd/SBA-16. (C) 2016 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available