4.7 Article

Electrospinning a versatile tool for designing hybrid proton conductive membrane

Journal

JOURNAL OF MEMBRANE SCIENCE
Volume 513, Issue -, Pages 12-19

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.memsci.2016.04.002

Keywords

Hybrid membrane; Electrospinning; Proton exchange membrane Fuel cell; Organic-Inorganic interface

Funding

  1. ANR-MeConPrHy

Ask authors/readers for more resources

The development of efficient hybrid membranes for high temperature Proton Exchange Membrane Fuel Cell (PEMFC) is currently under investigation. Here, we show that the electrospinning process combined with the sol-gel chemistry conduces to membranes with protonic conductivity similar to Nafion, at high temperature under the relative humidity of 90%, and with anisotropic mechanical properties due to the presence of long-range anisotropic object. The electrospun membranes' morphology is also highly dependent on the sol-gel chemistry (with/without additives) as well as the processing parameters including relative humidity, applied electrical field, temperature, rotating electrode's speed ... Our hybrid fibers are based on poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP)/ SO3H-silica networks that combines the ability to mimic the nano structural phase separation observed in hydrated Nafion with major feature, that is, array of orientated ionic nano channels intermingled within a locally aligned polymer, where proton can easily diffuse in this tubular nanostructure. (C) 2016 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available