4.6 Review

Experimental Treatments for Spinal Cord Injury: A Systematic Review and Meta-Analysis

Journal

CELLS
Volume 11, Issue 21, Pages -

Publisher

MDPI
DOI: 10.3390/cells11213409

Keywords

spinal cord injury; neuroregeneration; neuroprotection; experimental treatments; locomotor recovery

Categories

Ask authors/readers for more resources

Spinal cord injury (SCI) is a complex and prolonged injury process that leads to loss of neurological functions. Current treatments are limited and novel treatments targeting ongoing injury processes are needed. In a systematic review of studies, combined tetrahedral framework nucleic acid with neural stem cells and Fortasyn (R) Connect supplementation showed significant improvements in functional recovery and attenuated secondary injury processes.
Spinal cord injury (SCI) is characterized by a complex and prolonged injury process that exacerbates the damage induced by the primary injury and inhibits the potential for regeneration. SCI frequently results in the devastating loss of neurological functions and thus has serious consequences on patient quality of life. Current treatments are limited and focus on early interventions for the acute management of complications. Therefore, the development of novel treatments targeting ongoing injury processes is required to improve SCI outcomes. We aimed to systematically review studies published in the last 10 years that examined experimental treatments with neuroregenerative and neuroprotective capabilities for the improvement of SCI. We analyzed treatments from 44 studies that were identified through a systematic literature search using three databases: PubMed, Web of Science and EMBASE (searched through Ovid). We performed a meta-analysis for Basso-Beattie-Bresnahan (BBB) locomotion test data and collected immunohistochemistry results to demonstrate neuroregenerative and neuroprotective properties of the treatments, respectively. The two treatments that illustrated the most significant improvements in functional recovery using the BBB test were the combined use of tetrahedral framework nucleic acid (tFNA) with neural stem cells (NSCs) and Fortasyn (R) Connect (FC) supplementation. Both treatments also attenuated secondary injury processes as demonstrated through immunohistochemistry. Combined tFNA with NSCs and FC supplementation are promising treatments for the improvement of SCI as they both demonstrate neuroregenerative and neuroprotective properties. Further pre-clinical testing is required to validate and determine the long-term efficacies of these treatments for the improvement of SCI.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available