4.7 Article

Combining imaging flow cytometry and machine learning for high-throughput schistocyte quantification: A SVM classifier development and external validation cohort

Journal

EBIOMEDICINE
Volume 83, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.ebiom.2022.104209

Keywords

Schistocyte; Imaging flow cytometry; Machine learning; Thrombotic microangiopathy

Ask authors/readers for more resources

This study presents a method combining imaging flow cytometry and artificial intelligence for the direct label-free and operator-independent quantification of schistocytes in whole blood. By training a support vector machine blood elements' classifier, the method can reliably diagnose thrombotic microangiopathy syndrome in emergency situations.
Background Schistocyte counts are a cornerstone of the diagnosis of thrombotic microangiopathy syndrome (TMA). Their manual quantification is complex and alternative automated methods suffer from pitfalls that limit their use. We report a method combining imaging flow cytometry (IFC) and artificial intelligence for the direct label-free and operator-independent quantification of schistocytes in whole blood. Methods We used 135,045 IFC images from blood acquisition among 14 patients to extract 188 features with IDEAS (R) software and 128 features from a convolutional neural network (CNN) with Keras framework in order to train a support vector machine (SVM) blood elements' classifier used for schistocytes quantification. Finding Keras features showed better accuracy (94.03%, CI: 93.75-94.31%) than ideas features (91.54%, CI: 91.21-91.87%) in recognising whole-blood elements, and together they showed the best accuracy (95.64%, CI: 95.39-95.88%). We obtained an excellent correlation (0.93, CI: 0.90-0.96) between three haematologists and our method on a cohort of 102 patient samples. All patients with schistocytosis (> 1% schistocytes) were detected with excellent specificity (91.3%, CI: 82.0-96.7%) and sensitivity (100%, CI: 89.4-100.0%). We confirmed these results with a similar specificity (91.1%, CI: 78.8-97.5%) and sensitivity (100%, CI: 88.1-100.0%) on a validation cohort (n=74) analysed in an independent healthcare centre. Simultaneous analysis of 16 samples in both study centres showed a very good correlation between the 2 imaging flow cytometers (Y=1.001x). Interpretation We demonstrate that IFC can represent a reliable tool for operator-independent schistocyte quantification with no pre-analytical processing which is of most importance in emergency situations such as TMA. Copyright (C) 2022 The Author(s). Published by Elsevier B.V.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available