4.1 Article

Primary facets of order polytopes

Journal

JOURNAL OF MATHEMATICAL PSYCHOLOGY
Volume 75, Issue -, Pages 231-245

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jmp.2016.07.004

Keywords

Semiorder; Semiorder polytope; Order polytope; Facet-defining inequality

Ask authors/readers for more resources

Mixture models on order relations play a central role in recent investigations of transitivity in binary choice data. In such a model, the vectors of choice probabilities are the convex combinations of the characteristic vectors of all order relations of a chosen type. The five prominent types of order relations are linear orders, weak orders, semiorders, interval orders and partial orders. For each of them, the problem of finding a complete, workable characterization of the vectors of probabilities is crucial but it is reputably inaccessible. Under a geometric reformulation, the problem asks for a linear description of a convex polytope whose vertices are known. As for any convex polytope, a shortest linear description comprises one linear inequality per facet. Getting all of the facet-defining inequalities of any of the five order polytopes seems presently out of reach. Here we search for the facet-defining inequalities which we call primary because their coefficients take only the values 1, 0 or 1. We provide a classification of all primary, facet-defining inequalities of three of the five order polytopes. Moreover, we elaborate on the intricacy of the primary facet-defining inequalities of the linear order and the weak order polytopes. (C) 2016 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available