4.6 Article

Long-distance transport of sucrose in source leaves promotes sink root growth by the EIN3-SUC2 module

Journal

PLOS GENETICS
Volume 18, Issue 9, Pages -

Publisher

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pgen.1010424

Keywords

-

Ask authors/readers for more resources

This article studies the impact of glucose signaling on root growth. The study found that glucose directly regulates the activity of the sucrose transporter SUC2 through the transcription factor EIN3, which is mediated by the nuclear glucose sensor HXK1. By controlling the transport of sucrose, a molecular link between source tissues and sink tissues is established, promoting root growth.
In most plants, sucrose, a major storage sugar, is transported into sink organs to support their growth. This key physiological process is dependent on the function of sucrose transporters. Sucrose export from source tissues is predominantly controlled through the activity of SUCROSE TRANSPORTER 2 (SUC2), required for the loading of sucrose into the phloem of Arabidopsis plants. However, how SUC2 activity is controlled to support root growth remains unclear. Glucose is perceived via the function of HEXOKINASE 1 (HXK1), the only known nuclear glucose sensor. HXK1 negatively regulates the stability of ETHYLENE-INSENSITIVE3 (EIN3), a key ethylene/glucose interaction component. Here we show that HXK1 functions upstream of EIN3 in the regulation of root sink growth mediated by glucose signaling. Furthermore, the transcription factor EIN3 directly inhibits SUC2 activity by binding to the SUC2 promoter, regulating glucose signaling linked to root sink growth. We demonstrate that these molecular components form a HXK1-EIN3-SUC2 module integral to the control of root sink growth. Also, we demonstrate that with increasing age, the HXK1-EIN3-SUC2 module promotes sucrose phloem loading in source tissues thereby elevating sucrose levels in sink roots. As a result, glucose signaling mediated-sink root growth is facilitated. Our findings thus establish a direct molecular link between the HXK1-EIN3-SUC2 module, the source-to sink transport of sucrose and root growth. Author summaryIn Arabidopsis and most crops, sucrose transporters are positioned in the vascular bundles of leaf blades where they have crucial roles in balancing source and sink activities. However, little molecular detail is currently available regarding the modulation of sucrose transporter activity. Here, we demonstrate that the transcriptional regulator, EIN3, functions downstream of HEXOKINASE 1 (HXK1), which acts upstream of SUC2 in the regulation of root sink growth mediated by glucose signaling. Further, EIN3 directly represses SUC2 function by negatively regulating SUC2 transcription. We further demonstrate that these components form the HXK1-EIN3-SUC2 module to facilitate sucrose phloem loading in source tissues thereby elevating sucrose content in sink roots.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available