4.5 Article

Metformin Reduces Bleomycin-induced Pulmonary Fibrosis in Mice

Journal

JOURNAL OF KOREAN MEDICAL SCIENCE
Volume 31, Issue 9, Pages 1419-1425

Publisher

KOREAN ACAD MEDICAL SCIENCES
DOI: 10.3346/jkms.2016.31.9.1419

Keywords

Metformin; Bleomycin; Pulmonary Fibrosis; Mice

Funding

  1. Korea Healthcare Technology R&D Project, Ministry of Health and Welfare, Republic of Korea [A100190]
  2. Korea Health Promotion Institute [A100190] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

Ask authors/readers for more resources

Metformin has anti-inflammatory and anti-fibrotic effects. We investigated whether metformin has an inhibitory effect on bleomycin (BLM)-induced pulmonary fibrosis in a murine model. A total of 62 mice were divided into 5 groups: control, metformin (100 mg/kg), BLM, and BLM with metformin (50 mg/kg or 100 mg/kg). Metformin was administered to the mice orally once a day from day 1. We sacrificed half of the mice on day 10 and collected the bronchoalveolar lavage fluid (BALF) from their left lungs. The remaining mice were sacrificed and analyzed on day 21. The right lungs were harvested for histological analyses. The messenger RNA (mRNA) levels of epithelial-mesenchymal transition markers were determined via analysis of the harvested lungs on day 21. The mice treated with BLM and metformin (50 mg/kg or 100 mg/kg) showed significantly lower levels of inflammatory cells in the BALF compared with the BLM-only mice on days 10 and 21. The histological examination revealed that the metformin treatment led to a greater reduction in inflammation than the treatment with BLM alone. The mRNA levels of collagen, collagen-1, procollagen, fibronectin, and transforming growth factor-beta in the metformin-treated mice were lower than those in the BLM-only mice on day 21, although statistical significance was observed only in the case of procollagen due to the small number of live mice in the BLM-only group. Additionally, treatment with metformin reduced fibrosis to a greater extent than treatment with BLM alone. Metformin suppresses the inflammatory and fibrotic processes of BLM-induced pulmonary fibrosis in a murine model.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available