4.8 Article

Band Alignment Engineering in ns2 Electrons Doped Metal Halide Perovskites

Journal

LASER & PHOTONICS REVIEWS
Volume 17, Issue 1, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/lpor.202200458

Keywords

band alignment engineering; metal halide perovskites; scintillator; X-ray imaging

Ask authors/readers for more resources

A design method is established by considering charge-transfer and recombination efficiencies in doped MHPs materials, improving the luminescence performance of MHP scintillators. Alloying Te4+ into Cs2ZrCl6 significantly enhances scintillation performance, including increased light yield and detection limit, as well as high-resolution X-ray imaging capabilities.
Luminescent metal halide perovskites (MHPs) open new avenues for highly efficient radiation detection. To challenge the state-of-art technology, fundamental understanding of factors controlling radiation light yield of MHP scintillators is urgent. Herein, a design method is established by simultaneously considering charge-transfer and recombination efficiencies via band alignment engineering in doped MHPs materials, and this strategy is corroborated experimentally and computationally by applying it to the luminescence of ns(2) electron (Sb3+, Bi3+, and Te4+) doped vacancy-ordered double perovskite Cs2ZrCl6. Alloying Te4+ into Cs2ZrCl6 is optimized and significantly improves the scintillation performance, including a twofold increase in light yield and a threefold increase in detection limit over pristine Cs2ZrCl6, and high-resolution X-ray imaging with 20 mu m for 2D and 0.2 mm for 3D imaging. It is believed that doping engineering in MHPs enabling band alignment method holds great potential for the development of next-generation MHP scintillators.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available