4.7 Article

Infrared heating modeling of recycled PET preforms in injection stretch blow molding process

Journal

INTERNATIONAL JOURNAL OF THERMAL SCIENCES
Volume 181, Issue -, Pages -

Publisher

ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
DOI: 10.1016/j.ijthermalsci.2022.107762

Keywords

RecycledPET; Infraredheating; Halogenlamp; Modeling; Raytracingmethod; IRthermography; Injectionstretchblowmolding

Funding

  1. ARMINES organization

Ask authors/readers for more resources

This article investigates the impact of recycled PET material on the plastic bottle manufacturing industry and establishes a numerical model to simulate the effect of different recycling rates on preform temperature. The results show that the heating temperature of 100% recycled PET is 8 degrees higher than the virgin material, and heating 100% recycled PET to a sufficient forming temperature consumes about 8% less energy than for virgin PET.
Relatively recent citizen's consciousness about plastic pollution forces industrial actors of packaging to re-invent their shaping processes and materials. Specifically, for plastic bottle industry shaping, classical Polyethylene Terephthalate (PET) material is little by little replaced by recycled PET (rPET). The change in material composition due to recycling loops leads to an inevitable adaptation of the Injection Stretch Blow Molding (ISBM) process used to shape bottles at a satisfactory production rate. Indeed, rPET contains contaminants which modify its optical properties, so the heating stage becomes material-dependent and unstable regarding the polymer supplier. The approach adopted in this article is to build a numerical model able to simulate the infrared heating of rPET preforms, sensitive enough to predict changes in temperature due to the recycling rate. To do so, the optical properties of 50% and 100% rPET are measured by spectrometry and implemented in the simulation. Thermal radiative heat transfer between infrared lamps and rPET preforms is simulated by ray tracing method using an in-house software so-called RAYHEAT. Then, the result of the infrared ray tracing computation is used as the input heat source for thermal simulation by commercial software COMSOL Multiphysic (R) in order to simulate the temperature distribution of the preform. The numerical results are then confronted to experimental ones obtained on a research Stretch Blow Molding pilot, instrumented with thermography. The results show that the temperature obtained at the end of a classical heating cycle of the 100% recycled grade is 8 C higher than the virgin one. Also, simulations confirm that this difference is attributed to changes in optical properties. Finally, heating 100% rPET at a sufficient forming temperature is about 8% less energy consuming than for virgin PET.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available