4.7 Article

Evaluating indices of soil organic carbon stability. A case study for forest restoration projects near Beijing, China

Journal

ECOLOGICAL INDICATORS
Volume 142, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.ecolind.2022.109222

Keywords

Soil organic carbon stability; Relative stability indices; Soil types; Forest; Mega-cities

Funding

  1. Forestry scientific and technological achievements Popularization Project of State Forestry Administration [[2019] 3]
  2. China State Construction Technology R D Program [CSECE-2020-Z-5]

Ask authors/readers for more resources

This study compared the stability indices of soil organic carbon (SOC) in different plantation forest combinations in a sub-humid area close to a mega-urban area. The results showed inconsistencies among the six SOC stability indices. The contribution rates of different indices to SOC varied among the different plantations, suggesting that a combination of indices and knowledge of soil and vegetation types are needed for assessing SOC stability.
Afforestation of degraded lands close to mega-urban areas such as Beijing may help to restore some of the original soil carbon stocks and hold the potential for ameliorating the rate of increase in atmospheric CO2. However, the determinants of the stability of different soil carbon pools and the utility of indices of stability remain poorly characterized near these highly anthropogenic areas. In the current study, we compared metrics of soil organic carbon (SOC) stability taking into account different soil types and plantation forest combinations (Quartisamment soil-poplar plantation-QP, Eutrochrepts soil-Chinese pine plantation-ECP, Haplustepts soils -East-Liaoning oak plantation-HEO), in an experimental sub-humid area close to a mega-urban area (Beijing, China). We evaluated the following relative stability indices sequence: respired carbon from incubations (RI) for several incubation days to respire 5% of initial SOC (D), aggregate stability index (ASI), the ratio of SOC to total nitrogen (C: N), water-soluble carbon (WSC), particulate organic carbon (POC) and microbial biomass carbon (MBC). We examined the indices by three repeated measurements on soil samples from four soil layers (0-40 cm) in three soil-forest types in a forest area close to the peri-urban area of Beijing. Our results showed that there are inconsistencies among the six SOC stability indexes. The contribution rates of different indexes to the SOC in three plantations were different, for QP the highest contributor is WSC (54.73%), and for ECP and HEO the highest contributor is RI, contribution rates are 34.85% and 36.382%, respectively. Respired carbon from in-cubations registered the largest contribution rate to SOC (69.79%), and the correlation between RI and soil physical and chemical properties was the highest. We conclude that a combination of indices and knowledge of soil and vegetation types are needed for assessing SOC stability in restoration and reforestation projects close to mega-urban areas.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available