4.8 Article

Internal electric field engineering step-scheme-based heterojunction using lead-free Cs3Bi2Br9 perovskite-modified In4SnS8 for selective photocatalytic CO2 reduction to CO

Journal

APPLIED CATALYSIS B-ENVIRONMENTAL
Volume 313, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.apcatb.2022.121426

Keywords

CO2 reduction; Photocatalysis; Internal electric field; Cs3Bi2Br9 perovskite; In4SnS8

Funding

  1. National Basic Research Program of China [2016YFCO209301]
  2. Science and Technology Plans of Tianjin [17PTGCCx00250, 15ZXGTSF00020]
  3. Tianjin Development Program for Innovation and Entrepreneurship

Ask authors/readers for more resources

This study focuses on improving the activity of the photocatalytic CO2 reduction reaction and modulating product selectivity. The In4SnS8/Cs3Bi2Br9-X heterojunction shows high CO yield and selectivity, with improved performance compared to the pristine In4SnS8 catalyst. The S-scheme mechanism is confirmed through various experimental and theoretical techniques, providing insights into the improved efficiency of selective CO2 reduction to CO.
This study focuses on improving photocatalytic CO2 reduction reaction (CRR) activity and modulating product selectivity. An In4SnS8/Cs3Bi2Br9-X (ISS/CBB-X) heterojunction is prepared using novel lead-free Cs3Bi2Br9 perovskite quantum dot-modified In4SnS8, which shows considerable potential as photocatalysts for CRRs under visible light. The optimised ISS/CBB photocatalyst exhibits high activity and CO selectivity with a CO yield and selectivity of 9.55 mu mol g(-1) h(-1) and 92.9%, respectively, 3.8 and 1.5 times higher than those of pristine ISS, respectively. Moreover, the step-scheme (S-scheme) mechanism can be fully confirmed via in situ irradiated X-ray photoelectron spectroscopy, in situ electron spin resonance, femtosecond time-resolved absorption spectroscopy and density functional theory calculations. Based on in situ diffuse reflectance spectra and theoretical investigations, the ISS/CBB shows a decreased energy barrier towards CO2 reduction to CO through an adsorbed *COOH intermediate. This study contributes to the further understanding of fabricating efficient S-scheme-based photocatalysts for selective CRR.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available