4.5 Article

Neuromuscular effort predicts walk-run transition speed in normal and adapted human gaits

Journal

JOURNAL OF EXPERIMENTAL BIOLOGY
Volume 219, Issue 18, Pages 2809-2813

Publisher

COMPANY OF BIOLOGISTS LTD
DOI: 10.1242/jeb.140723

Keywords

Human locomotion; Gait transition; Split-belt treadmill; Electromyography

Categories

Ask authors/readers for more resources

Often, humans and other animals move in a manner that minimizes energy costs. It is more economical to walk at slow speeds, and to run at fast speeds. Here, we asked whether humans select a gait that minimizes neuromuscular effort under novel and unfamiliar conditions, by imposing interlimb asymmetry during split-belt treadmill locomotion. The walk-run transition speed changed markedly across different gait conditions: forward, backward, hybrid (one leg forward, one leg backward) and forward with speed differences (one leg faster than the other). Most importantly, we showed that the human walk-run transition speed across conditions was predicted by changes in neuromuscular effort (i.e. summed leg muscle activations). Our results for forward gait and forward gait with speed differences suggest that human locomotor patterns are optimized under both familiar and novel gait conditions by minimizing the motor command for leg muscle activation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available