4.1 Article

Localization of a Trypanosome Peroxin to the Endoplasmic Reticulum

Journal

JOURNAL OF EUKARYOTIC MICROBIOLOGY
Volume 64, Issue 1, Pages 97-105

Publisher

WILEY
DOI: 10.1111/jeu.12343

Keywords

Glycosomes; peroxisome; Pex13; Trypanosoma brucei

Categories

Funding

  1. National Institutes of Health [P20GM109094]
  2. Clemson University Creative Inquiry Program
  3. Atlantic Coast Conference Fellowship for Innovation and Creativity

Ask authors/readers for more resources

Trypanosoma brucei is the causative agent of diseases that affect 30,000-50,000 people annually. Trypanosoma brucei harbors unique organelles named glycosomes that are essential to parasite survival, which requires growth under fluctuating environmental conditions. The mechanisms that govern the biogenesis of these organelles are poorly understood. Glycosomes are evolutionarily related to peroxisomes, which can proliferate de novo from the endoplasmic reticulum or through the growth and division of existing organelles depending on the organism and environmental conditions. The effect of environment on glycosome biogenesis is unknown. Here, we demonstrate that the glycosome membrane protein, TbPex13.1, is localized to glycosomes when cells are cultured under high glucose conditions and to the endoplasmic reticulum in low glucose conditions. This localization in low glucose was dependent on the presence of a C-terminal tripeptide sequence. Our findings suggest that glycosome biogenesis is influenced by extracellular glucose levels and adds to the growing body of evidence that de novo glycosome biogenesis occurs in trypanosomes. Because the movement of peroxisomal membrane proteins is a hallmark of ER-dependent peroxisome biogenesis, TbPex13.1 may be a useful marker for the study such processes in trypanosomes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available