4.4 Article

Corn Nitrogen Management Influences Nitrous Oxide Emissions in Drained and Undrained Soils

Journal

JOURNAL OF ENVIRONMENTAL QUALITY
Volume 45, Issue 6, Pages 1847-1855

Publisher

AMER SOC AGRONOMY
DOI: 10.2134/jeq2016.06.0237

Keywords

-

Funding

  1. Minnesota Soybean Research and Promotion Council

Ask authors/readers for more resources

To date, no studies have evaluated nitrous oxide (N2O) emissions of a single versus a split-nitrogen (N) fertilizer application under different soil drainage conditions for corn (Zea mays L.). The objective of this study was to quantify season-long cumulative N2O emissions, N use efficiency, and soil N dynamics when corn received a recommended N rate as single or split-N application in Minnesota soils with and without tile drainage over two growing seasons. Preplant urea was broadcast incorporated, and in-season split-N was broadcast as urea plus urease inhibitor. Tile drainage reduced N2O emissions during periods of excess moisture but did not affect grain yield or other agronomic parameters. Conversely, when precipitation was adequate and well distributed, tile drainage did not affect N2O emissions, but it did enhance grain yield. Averaged across years, the undrained soil emitted 1.8 times more N2O than the drained soil (2.36 vs. 1.29 kg N ha(-1)). Compared with the Zero-N control, the Single Preplant and Split N applications emitted 2.1 and 1.6 times more N2O, produced 1.4 and 1.3 times greater grain yield, and resulted in 1.5 and 1.4 times more residual soil total inorganic N, respectively. Per unit of grain yield, the Split application emitted similar amounts of N2O as the Zero-N control. Averaged across years and drainage, the Split application emitted 26% less N2O than the Single Preplant application (1.84 vs. 2.48 kg N ha-1; P < 0.001) with no grain yield differences. These results highlight that soil drainage can reduce N2O emissions and that a split N application may be a feasible way to achieve N2O reduction while enhancing grain yield.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available