4.6 Article

White blood cell classification via a discriminative region detection assisted feature aggregation network

Journal

BIOMEDICAL OPTICS EXPRESS
Volume 13, Issue 10, Pages 5246-5260

Publisher

Optica Publishing Group
DOI: 10.1364/BOE.462905

Keywords

-

Funding

  1. National Natural Science Foundation of China
  2. [62076228]

Ask authors/readers for more resources

This paper proposes a deep neural network for white blood cell classification using discriminative region detection assisted feature aggregation. The network accurately locates white blood cell areas and achieves higher classification performance.
White blood cell (WBC) classification plays an important role in human pathological diagnosis since WBCs will show different appearance when they fight with various disease pathogens. Although many previous white blood cell classification have been proposed and earned great success, their classification accuracy is still significantly affected by some practical issues such as uneven staining, boundary blur and nuclear intra-class variability. In this paper, we propose a deep neural network for WBC classification via discriminative region detection assisted feature aggregation (DRFA-Net), which can accurately locate the WBC area to boost final classification performance. Specifically, DRFA-Net uses an adaptive feature enhancement module to refine multi-level deep features in a bilateral manner for efficiently capturing both high-level semantic information and low-level details of WBC images. Considering the fact that background areas could inevitably produce interference, we design a network branch to detect the WBC area with the supervision of segmented ground truth. The bilaterally refined features obtained from two directions are finally aggregated for final classification, and the detected WBC area is utilized to highlight the features of discriminative regions by an attention mechanism. Extensive experiments on several public datasets are conducted to validate that our proposed DRFA-Net can obtain higher accuracies when compared with other state-of-the-art WBC classification methods.(c) 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available