4.7 Article

miR-596-3p suppresses brain metastasis of non-small cell lung cancer by modulating YAP1 and IL-8

Journal

CELL DEATH & DISEASE
Volume 13, Issue 8, Pages -

Publisher

SPRINGERNATURE
DOI: 10.1038/s41419-022-05062-7

Keywords

-

Categories

Funding

  1. Haiyan Fund Project of Harbin Medical University Cancer Hospital [JJMS2021-08]
  2. Heilongjiang Provincial Postdoctoral Science Foundation [LBH-Z20073]
  3. Natural Science Foundation of Heilongjiang Province [LH2021H080]
  4. Postdoctoral Science Foundation of China [2021M693819]
  5. King Abdullah University of Science and Technology (KAUST) Office of Sponsored Research (OSR) [URF/1/3450-01-01, URF/1/4098-01-01, REI/1/4216-01-01, REI/1/4437-01-01, REI/1/4473-01-01]

Ask authors/readers for more resources

This study investigates the role of miR-596-3p in brain metastasis of NSCLC. The results reveal that miR-596-3p inhibits the invasion of cancer cells and permeability of the blood brain barrier by modulating the YAP1-IL8 network. The findings suggest that miR-596-3p may serve as a potential therapeutic target for brain metastasis in NSCLC.
Brain metastasis (BM) frequently occurs in advanced non-small cell lung cancer (NSCLC) and is associated with poor clinical prognosis. Due to the location of metastatic lesions, the surgical resection is limited and the chemotherapy is ineffective because of the existence of the blood brain barrier (BBB). Therefore, it is essential to enhance our understanding about the underlying mechanisms associated with brain metastasis in NSCLC. In the present study, we explored the RNA-Seq data of brain metastasis cells from the GEO database, and extracted RNA collected from primary NSCLC tumors as well as paired brain metastatic lesions followed by microRNA PCR array. Meanwhile, we improved the in vivo model and constructed a cancer stem cell-derived transplantation model of brain metastasis in mice. Our data indicated that the level of miR-596-3p is high in primary NSCLC tumors, but significantly downregulated in the brain metastatic lesion. The prediction target of microRNA suggested that miR-596-3p was considered to modulate two genes essential in the brain invasion process, YAP1 and IL-8 that restrain the invasion of cancer cells and permeability of BBB, respectively. Moreover, in vivo experiments suggested that our model mimics the clinical aspect of NSCLC and improves the success ratio of brain metastasis model. The results demonstrated that miR-596-3p significantly inhibited the capacity of NSCLC cells to metastasize to the brain. Furthermore, these finding elucidated that miR-596-3p exerts a critical role in brain metastasis of NSCLC by modulating the YAP1-IL8 network, and this miRNA axis may provide a potential therapeutic strategy for brain metastasis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available