4.6 Article

Biomechanical responses of human lumbar spine and pelvis according to the Roussouly classification

Journal

PLOS ONE
Volume 17, Issue 7, Pages -

Publisher

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0266954

Keywords

-

Funding

  1. National Natural Science Foundation of China [11972065]
  2. Beijing Natural Science Foundation [L202006]

Ask authors/readers for more resources

This study investigated the biomechanical characteristics of the spine with different sagittal alignment morphotypes. The results showed that the sagittal configuration of the spine had a strong effect on the biomechanical responses, with the apex of the lumbar lordosis being the critical position with the lowest range of motion. Different morphotypes also had different distribution of rotation and stress patterns.
Background Few studies have analyzed the different biomechanical properties of the lumbar with various morphological parameters, which play an important role in injury and degeneration. This study aims to preliminarily investigate biomechanical characteristics of the spine with different sagittal alignment morphotypes by using finite element (FE) simulation and in-vitro testing. Methods According to the lumbar-pelvic radiographic parameters of the Chinese population, the parametric FE models (L1-S1-pelvis) of Roussouly's type (1-4) were validated and developed based on the in-vitro biomechanical testing. A pure moment of 7.5 Nm was applied in the three anatomical planes to simulate the physiological activities of flexion, extension, left-right lateral bending and left-right axial rotation. Results The sagittal configuration of four Roussouly's type models had a strong effect on the biomechanical responses in flexion and extension. The apex of the lumbar lordosis is a critical position where the segment has the lowest range of motion among all the models. In flexion-extension, type 3 and 4 models with a good lordosis shape had a more uniform rotation distribution at each motor function segment, however, type 1 and 2 models with a straighter spine had a larger proportion of rotation at the L5-S1 level. In addition, type 1 and 2 models had higher intradiscal pressures (IDPs) at the L4-5 segment in flexion, while type 4 model had larger matrix and fiber stresses at the L5-S1 segment in extension. Conclusion The well-marched lordotic type 3 lumbar had greater stability, however, a straighter spine (type 1 and 2) had poor balance and load-bearing capacity. The hypolordotic type 4 model showed larger annulus fiber stress. Therefore, the sagittal alignment of Roussouly's type models had different kinetic and biomechanical responses under various loading conditions, leading to different clinical manifestations of the lumbar disease.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available