4.7 Article

GelMA-Encapsulated hDPSCs and HUVECs for Dental Pulp Regeneration

Journal

JOURNAL OF DENTAL RESEARCH
Volume 96, Issue 2, Pages 192-199

Publisher

SAGE PUBLICATIONS INC
DOI: 10.1177/0022034516682005

Keywords

pulp biology; vascular biology; endodontics; tissue engineering

Funding

  1. National Institutes of Health/National Institute of Dental and Craniofacial Research [RO1DE016132]
  2. Tufts University School of Dental Medicine Masters Project
  3. Tufts Center for Neuroscience Research [P30 NS047243]

Ask authors/readers for more resources

Pulpal revascularization is commonly used in the dental clinic to obtain apical closure of immature permanent teeth with thin dentinal walls. Although sometimes successful, stimulating bleeding from the periapical area of the tooth can be challenging and in turn may deleteriously affect tooth root maturation. Our objective here was to define reliable methods to regenerate pulp-like tissues in tooth root segments (RSs). G1 RSs were injected with human dental pulp stem cells (hDPSCs) and human umbilical vein endothelial cells (HUVECs) encapsulated in 5% gelatin methacrylate (GelMA) hydrogel. G2 RSs injected with acellular GelMA alone, and G3 empty RSs were used as controls. White mineral trioxide aggregate was used to seal one end of the tooth root segment, while the other was left open. Samples were cultured in vitro in osteogenic media (OM) for 13 d and then implanted subcutaneously in nude rats for 4 and 8 wk. At least 5 sample replicates were used for each experimental group. Analyses of harvested samples found that robust pulp-like tissues formed in G1, GelMA encapsulated hDPSC/HUVEC-filled RSs, and less cellularized host cell-derived pulp-like tissue was observed in the G2 acellular GelMA and G3 empty RS groups. Of importance, only the G1, hDPSC/HUVEC-encapsulated GelMA constructs formed pulp cells that attached to the inner dentin surface of the RS and infiltrated into the dentin tubules. Immunofluorescent (IF) histochemical analysis showed that GelMA supported hDPSC/HUVEC cell attachment and proliferation and also provided attachment for infiltrating host cells. Human cell-seeded GelMA hydrogels promoted the establishment of well-organized neovasculature formation. In contrast, acellular GelMA and empty RS constructs supported the formation of less organized host-derived vasculature formation. Together, these results identify GelMA hydrogel combined with hDPSC/HUVECs as a promising new clinically relevant pulpal revascularization treatment to regenerate human dental pulp tissues.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Nanoscience & Nanotechnology

Stretchable and Bioadhesive Gelatin Methacryloyl-Based Hydrogels Enabled by in Situ Dopamine Polymerization

Hossein Montazerian, Avijit Baidya, Reihaneh Haghniaz, Elham Davoodi, Samad Ahadian, Nasim Annabi, Ali Khademhosseini, Paul S. Weiss

Summary: By adding more dopamine moieties to the GelMA prepolymer solution and conducting alkaline dopamine oxidation, the mechanical and adhesive properties of GelMA hydrogels were significantly enhanced. The optimized hydrogels exhibited increased stretchability and toughness, making them suitable for skin-attachable substrates. Further studies on parameters such as UV light, photoinitiator type, and alkaline dopamine oxidation were conducted to tune the cross-linking density for improved adhesive properties.

ACS APPLIED MATERIALS & INTERFACES (2021)

Article Engineering, Biomedical

Engineering liver microtissues to study the fusion of HepG2 with mesenchymal stem cells and invasive potential of fused cells

Junmin Lee, Aly Ung, Hanjun Kim, KangJu Lee, Hyun-Jong Cho, Praveen Bandaru, Samad Ahadian, Mehmet R. Dokmeci, Ali Khademhosseini

Summary: Increasing evidence suggests that fusion of cancer cells with different cell types in the tumor microenvironment may contribute to the generation of metastasis-initiating cells. The role of human mesenchymal stem cells (hMSCs) in fusion with cancer cells is still controversial. In this study, a liver-on-a-chip platform was used to investigate the fusion of liver hepatocellular cells (HepG2) with hMSCs and their invasive potential. It was found that hMSCs may play dual roles in HepG2 spheroids, preventing HepG2 growth while also leading to the generation of highly invasive HepG2-hMSC hybrid cells. These hybrid cells expressed markers associated with stemness, proliferation, epithelial to mesenchymal transition, and matrix deposition, and were responsible for collective invasion following HepG2.

BIOFABRICATION (2022)

Article Engineering, Biomedical

Multi-material digital light processing bioprinting of hydrogel-based microfluidic chips

Anant Bhusal, Elvan Dogan, Hai-Anh Nguyen, Olga Labutina, Daniel Nieto, Ali Khademhosseini, Amir K. Miri

Summary: This study developed a multi-material DLP-based bioprinter for rapid prototyping of hydrogel-based microfluidic chips. The optimized composite hydrogel bioink allows for a wide range of mechanical properties. The biofabrication approach offers a useful tool for integrating micro-tissue models into organs-on-chips and high-throughput drug screening platforms.

BIOFABRICATION (2022)

Review Biotechnology & Applied Microbiology

Advances and challenges in developing smart, multifunctional microneedles for biomedical applications

Maryam Tavafoghi, Fatemeh Nasrollahi, Solmaz Karamikamkar, Mahboobeh Mahmoodi, Sara Nadine, Joao F. Mano, Mohammad A. Darabi, Jamileh Jahangiry, Samad Ahadian, Ali Khademhosseini

Summary: Microneedles (MNs) have been developed as minimally invasive tools for diagnostic and therapeutic applications. There is increasing interest in developing smart multifunctional MN devices for body fluid extraction, biosensing, and drug delivery. The main challenge is integrating multiple modules, such as drug carriers and biosensors, in one miniaturized MN device. Researchers have shown the feasibility of creating smart MNs using biomaterials and microscale technologies. Hydrogel-based MN devices show high potential for biomedical applications. The improvement of biomaterials knowledge and biofabrication techniques will allow the development of more effective personalized therapeutics.

BIOTECHNOLOGY AND BIOENGINEERING (2022)

Review Chemistry, Multidisciplinary

Engineered Hemostatic Biomaterials for Sealing Wounds

Hossein Montazerian, Elham Davoodi, Avijit Baidya, Sevana Baghdasarian, Einollah Sarikhani, Claire Elsa Meyer, Reihaneh Haghniaz, Maryam Badv, Nasim Annabi, Ali Khademhosseini, Paul S. Weiss

Summary: Hemostatic biomaterials have great potential in wound control, particularly for uncontrolled bleeding associated with damaged tissues, traumatic wounds, and surgical incisions. Current research focuses on enhancing the hemostatic properties of bioactive materials through triggering the coagulation cascade, using biocompatible and biodegradable materials for rapid blood coagulation, and developing tough bioadhesives for efficient incision sealing.

CHEMICAL REVIEWS (2022)

Article Engineering, Biomedical

One-Step Bioprinting of Multi-Channel Hydrogel Filaments Using Chaotic Advection: Fabrication of Pre-Vascularized Muscle-Like Tissues

Edna Johana Bolivar-Monsalve, Carlos Fernando Ceballos-Gonzalez, Carolina Chavez-Madero, Brenda Guadalupe de la Cruz-Rivas, Silvana Velasquez Marin, Shirley Mora-Godinez, Luisa Maria Reyes-Cortes, Ali Khademhosseini, Paul S. Weiss, Mohamadmahdi Samandari, Ali Tamayol, Mario Moises Alvarez, Grissel Trujillo-de Santiago

Summary: This study presents an effective and practical method for the fabrication of pre-vascularized engineered tissues. By co-extruding cell-laden hydrogels and sacrificial materials through printheads containing Kenics static mixing elements, thin hydrogel filaments containing dozens of hollow microchannels as small as a single cell are continuously and one-step fabricated. The hollow channels in the filaments promote cell viability, metabolic activity, proliferation, and cell alignment.

ADVANCED HEALTHCARE MATERIALS (2022)

Article Materials Science, Biomaterials

Thermoresponsive shear-thinning hydrogel (T-STH) hemostats for minimally invasive treatment of external hemorrhages

Marvin Mecwan, Reihaneh Haghniaz, Alireza Hassani Najafabadi, Kalpana Mandal, Vadim Jucaud, Johnson V. John, Ali Khademhosseini

Summary: Researchers have successfully engineered a thermoresponsive shear-thinning hydrogel, composed of a thermoresponsive polymer and hemostatic silicate nanodisks, as an injectable hemostat. This hydrogel demonstrates rapid mechanical recovery and temperature-dependent blood coagulation, effectively preventing blood loss. It shows comparable efficacy to a commercially available hemostat and can be easily removed using a cold saline wash.

BIOMATERIALS SCIENCE (2023)

Article Chemistry, Multidisciplinary

Deep Eutectic Solvents-Based Ionogels with Ultrafast Gelation and High Adhesion in Harsh Environments

Gang Ge, Kalpana Mandal, Reihaneh Haghniaz, Mengchen Li, Xiao Xiao, Larry Carlson, Vadim Jucaud, Mehmet Remzi Dokmeci, Ghim Wei Ho, Ali Khademhosseini

Summary: Adhesive materials have been receiving increasing attention for their excellent sealing ability. However, existing adhesives typically have weak adhesion strength and deteriorate in harsh environments. In this study, a novel ionogel with tunable mechanical properties is developed using a deep eutectic solvent as the medium for photopolymerization. The ionogel demonstrates fast gelation and bonding without external pressure, high adhesion in various environments, and wide applications in packaging, marine engineering, medical adhesives, and electronic assembly.

ADVANCED FUNCTIONAL MATERIALS (2023)

Article Cell & Tissue Engineering

Stem Cell-Derived Cardiomyocyte-Like Cells in Myocardial Regeneration

Pauline Cheng, Ahmad Rashad, Ankit Gangrade, Natan Roberto de Barros, Ali Khademhosseini, Jonathan Tam, Padmini Varadarajan, Devendra K. Agrawal, Finosh G. Thankam

Summary: Myocardial infarction leads to the loss of cardiomyocytes, but stem cell therapy shows promise in restoring cardiac function. This article discusses the application of different stem cell phenotypes and strategies to promote their differentiation into cardiomyocytes.

TISSUE ENGINEERING PART B-REVIEWS (2023)

Article Engineering, Biomedical

Poly-Catecholic Functionalization of Biomolecules for Rapid Gelation, Robust Injectable Bioadhesion, and Near-Infrared Responsiveness

Hossein Montazerian, Alireza Hassani Najafabadi, Elham Davoodi, Rasoul Seyedmahmoud, Reihaneh Haghniaz, Avijit Baidya, Wei Gao, Nasim Annabi, Ali Khademhosseini, Paul S. Weiss

Summary: Mussel-inspired catechol-functionalization of degradable natural biomaterials is proposed as a potential approach to achieve bioadhesion for sutureless wound closure. This approach involves a simple oxidative polymerization step before conjugation of catechol-carrying molecules to amplify catechol function in bioadhesion. The modified gelatin with poly(l-DOPA) moieties shows improved wound control and enhanced cohesion, surpassing commercial sealants, and also possesses photothermal responsiveness and antibacterial activity, making it an effective biomaterial design strategy for wound closure applications.

ADVANCED HEALTHCARE MATERIALS (2023)

Article Materials Science, Multidisciplinary

Catechol Conjugation for Bioadhesion in Photo-Cross-Linkable Biomaterials

Hossein Montazerian, Shameek Mitra, Alireza Hassani Najafabadi, Rasoul Seyedmahmoud, Yuting Zheng, Mehmet Remzi Dokmeci, Nasim Annabi, Ali Khademhosseini, Paul S. Weiss

Summary: Inspired by mussel adhesion, catechol functionalization has been widely used to impart adhesion to biomaterials. However, the bioadhesion capacity of catechol motifs in hydrogels that crosslink through free-radical-based systems is debated. This study reevaluates the bioadhesion efficacy of catechol functionalized gelatin biomolecules in methacryloyl-modified photo-cross-linkable biomaterials, and investigates the effects of catechol content on adhesion strength and hydrogel integrity. The cytotoxic and immunostimulatory effects of catechol groups are also evaluated for clinical applications.

ACS MATERIALS LETTERS (2023)

Article Chemistry, Analytical

Screen-Printed Textile-Based Electrochemical Biosensor for Noninvasive Monitoring of Glucose in Sweat

Safoora Khosravi, Saeid Soltanian, Amir Servati, Ali Khademhosseini, Yangzhi Zhu, Peyman Servati

Summary: Wearable sweat biosensors embedded in textile substrates have gained attention for noninvasive monitoring of health parameters. A flexible electrochemical glucose sensor that can be screen-printed onto a textile substrate is demonstrated, achieving a linear response in the range of 20-1000μM of glucose concentration with high sensitivity and stability. These textile-based biosensors show high selectivity towards glucose and have the potential to impact the next generation of wearable devices.

BIOSENSORS-BASEL (2023)

Review Automation & Control Systems

Bioionic Liquids: Enabling a Paradigm Shift Toward Advanced and Smart Biomedical Applications

Baishali Kanjilal, Yangzhi Zhu, Vaishali Krishnadoss, Janitha M. M. Unagolla, Parnian Saemian, Alessia Caci, Danial Cheraghali, Iman Dehzangi, Ali Khademhosseini, Iman Noshadi

Summary: Ionic liquids (ILs) have unique properties that make them promising candidates for biomedical applications, but their cytocompatibility limitations are enhanced by using bioionic liquids (BILs) derived from biological molecules. BILs can be synthesized and immobilized onto biopolymers, and their functionalization enables the design of responsive actuators and sensors. The cytocompatibility of BIL-functionalized polymers also makes them suitable for power storage and implantable devices. This review focuses on the recent advances of BILs in biomedical applications, specifically their use as functionalization agents for biopolymers and solvents for supermolecular ionic networks.

ADVANCED INTELLIGENT SYSTEMS (2023)

Article Chemistry, Multidisciplinary

Gelatin methacryloyl granular scaffolds for localized mRNA delivery

Bruna Gregatti Carvalho, Aya Nakayama, Hiromi Miwa, Sang Won Han, Lucimara Gaziola de la Torre, Dino Di Carlo, Junmin Lee, Han-Jun Kim, Ali Khademhosseini, Natan Roberto de Barros

Summary: A novel mRNA-releasing matrix based on GelMA microporous annealed particle scaffolds is reported. The sustained release of mRNA complexes achieves indirect intracellular delivery, while direct intracellular delivery is achieved by cell adhesion on the mRNA-releasing scaffolds. This hybrid system demonstrates efficient protein expression, offering potential for mRNA-releasing biomaterials in tissue engineering.

AGGREGATE (2023)

Review Chemistry, Multidisciplinary

Bio-macromolecular design roadmap towards tough bioadhesives

Hossein Montazerian, Elham Davoodi, Avijit Baidya, Maryam Badv, Reihaneh Haghniaz, Arash Dalili, Abbas S. Milani, Mina Hoorfar, Nasim Annabi, Ali Khademhosseini, Paul S. Weiss

Summary: This review provides a biomacromolecular design roadmap for the development of tough adhesive surgical sealants. The intrinsic toughness and elasticity of polymers are achieved through the introduction of strong and dynamic inter- and intramolecular interactions, either through polymer chain design or the use of crosslink regulating additives. Efforts have also been made to promote underwater adhesion through covalent/noncovalent bonds and micro/macro-interlock mechanisms. The measurement and reporting requirements for fair comparisons of different materials and their properties are discussed.

CHEMICAL SOCIETY REVIEWS (2022)

No Data Available