4.8 Article

The structure-dependent toxicity, pharmacokinetics and anti-tumour activity of HPMA copolymer conjugates in the treatment of solid tumours and leukaemia

Journal

JOURNAL OF CONTROLLED RELEASE
Volume 223, Issue -, Pages 1-10

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jconrel.2015.12.023

Keywords

HPMA; Doxorubicin; Structure; Toxicity; Anti-tumour activity

Funding

  1. GACR [P301/11/0325]
  2. Project BIOCEV of the European Regional Development Fund [CZ.1.05/1.1.00/02.0109]
  3. Institutional Research Concept RVO [61388971]

Ask authors/readers for more resources

Polymer drug carriers that are based on N-(2-hydroxypropyl) methacrylamide (HPMA) copolymers have been widely used in the development and synthesis of high-molecular-weight (HMW) drug delivery systems for cancer therapy. In this study, we compared linear (M-w similar to 27 kDa, Rh similar to 4 nm) and non-degradable star (M-w similar to 250 kDa, R-h similar to 13 nm) HPMA copolymer conjugates bearing anthracycline antibiotic doxorubicin (DOX) bound via pH-sensitive hydrazone bond. We determined the in vitro and in vivo toxicity of both conjugates and their maximum tolerated dose (MTD). We also compared their anti-tumour activity in mouse B-cell leukaemia (BCL1) and a mouse T-cell lymphoma (EL4) model. We found that MTD was higher for the linear conjugate (85 mg DOX/kg) and lower for the star conjugate (22.5 mg DOX/kg). An evaluation of the intestinal barrier integrity using FITC-dextran as a gut permeability tracer proved that no pathology was caused by the MTD of either conjugate. However, free DOX showed some damage to the gut barrier. The therapy of BCL1 leukaemia by both of the polymeric conjugates using the MTD or its fraction (i.e., equitoxic dosage) showed better results in the case of the star conjugate. On the other hand, treatment of EL4 lymphoma seemed to be more efficient when the linear conjugate was used. We suppose that the anti-cancer treatment of solid tumours and leukaemias requires different types of drug conjugates. We hypothesise that the most suitable HPMA copolymer-DOX conjugate for the treatment of solid tumours should have an HMW structure with increased Rh that would be stable for three to four days after the conjugate administration and then rapidly disintegrate in the short polymer chains, which are excretable from the body by glomerular filtration. On the other hand, the treatment of leukaemia requires a drug conjugate with a long circulation half-life. This would provide an active drug, whilst slowly degrading to excretable fragments. (C) 2015 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available