4.7 Article

A fully-implicit finite-volume method for multi-fluid reactive and collisional magnetized plasmas on unstructured meshes

Journal

JOURNAL OF COMPUTATIONAL PHYSICS
Volume 318, Issue -, Pages 252-276

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcp.2016.04.058

Keywords

Plasma; Finite volume method; Magnetohydrodynamics (MHD); Multi-fluid

Funding

  1. Agency for Innovation by Science and Technology in Flanders (IWT)
  2. Research Foundation of Flanders [FWO G.0729.11N]
  3. KU Leuven [GOA/2015-014]
  4. FWO-Vlaanderen [G.0A23.16N]
  5. ESA Prodex [C90347]

Ask authors/readers for more resources

We present a Finite Volume scheme for solving Maxwell's equations coupled to magnetized multi-fluid plasma equations for reactive and collisional partially ionized flows on unstructured meshes. The inclusion of the displacement current allows for studying electromagnetic wave propagation in a plasma as well as charge separation effects beyond the standard magnetohydrodynamics (MHD) description, however, it leads to a very stiff system with characteristic velocities ranging from the speed of sound of the fluids up to the speed of light. In order to control the fulfillment of the elliptical constraints of the Maxwell's equations, we use the hyperbolic divergence cleaning method. In this paper, we extend the latter method applying the CIR scheme with scaled numerical diffusion in order to balance those terms with the Maxwell flux vectors. For the fluids, we generalize the AUSM+-up to multiple fluids of different species within the plasma. The fully implicit second-order method is first verified on the Hartmann flow (including comparison with its analytical solution), two ideal MHD cases with strong shocks, namely, Orszag-Tang and the MHD rotor, then validated on a much more challenging case, representing a two-fluid magnetic reconnection under solar chromospheric conditions. For the latter case, a comparison with pioneering results available in literature is provided. (C) 2016 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available