4.4 Article

Epoxy nanocomposites with carbon nanotubes and montmorillonite: Mechanical properties and electrical insulation

Journal

JOURNAL OF COMPOSITE MATERIALS
Volume 50, Issue 24, Pages 3363-3372

Publisher

SAGE PUBLICATIONS LTD
DOI: 10.1177/0021998315620000

Keywords

Epoxy nanocomposites; carbon nanotubes; montmorillonite; impact toughness; electrical insulation property

Funding

  1. State Key Laboratory Breeding Base of Dielectrics Engineering of China [DE2012B02]

Ask authors/readers for more resources

Multiwalled carbon nanotubes have been widely used as mechanical reinforcement fillers for polymers during the past few decades. However, high electrical conductivity of raw multiwalled carbon nanotubes hampers their application in some fields demanding not only good mechanical properties and/or high thermal conductivity but also electrical insulation. In this research, carboxyl functionalized multiwalled carbon nanotubes and organically modified montmorillonite were introduced to prepare epoxy nanocomposites with anhydride as curingagent. The obtained epoxy nanocomposites possessed improved impact toughness, and the electrical insulation was maintained. Compared to the volume resistivity of the raw multiwalled carbon nanotubes (0.6wt%)/epoxy nanocomposites, the volume resistivity of the organically modified montmorillonite/carboxyl functionalized multiwalled carbon nanotubes (0.6wt%)/epoxy nanocomposites increased more than four order of magnitude. These excellent properties were attributed to the synergistic effect of carboxyl functionalized multiwalled carbon nanotubes and organically modified montmorillonite on toughening epoxy, as well as the suppression of electron transport by multiwalled carbon nanotubes surface modification and the organically modified montmorillonite layer in the multiwalled carbon nanotubes conductive network. The effects of adding nanofillers on the dielectricconstant and dielectric loss values of epoxy nanocomposites were also studied. This work has demonstrated the feasibility of using multiwalled carbon nanotubes as mechanical reinforcement fillers, while simultaneously giving electrical insulation in the polymer nanocomposites.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available