4.7 Review

Mixed Metal Sulfides for the Application of Photocatalytic Energy Conversion

Journal

ENERGY & FUELS
Volume -, Issue -, Pages -

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.energyfuels.2c01137

Keywords

-

Funding

  1. National Key Research and Development Program of China [2021YFA1500700]
  2. National Natural Science Foundation of China [22066022]

Ask authors/readers for more resources

This review provides an overview of the recent progress in metal sulfide semiconductors for photocatalytic energy conversion. It introduces the modifications on the morphologies and structures of metal sulfides, outlines their applications in H2 production, CO2 reduction, and N2 fixation, and elaborates on the correlations between modification and photocatalytic activity. The challenges and perspectives of metal sulfides in energy conversion are also discussed.
Benefiting from suitable band energy and outstanding redox reversibility, metal sulfides have drawn extensive research attention in photocatalysis, especially in energy conversion. This review overviews the progress of metal sulfide semiconductors in the recent five years for photocatalytic energy conversion. First, the modifications on morphologies and structures of metal sulfides are introduced. Then, the applications of metal sulfides in photocatalytic energy conversion are outlined, which include H-2 production, CO2 reduction, and N-2 fixation. Especially, the correlations between modification and photocatalytic activity are elaborated. Finally, the challenges and perspectives of metal sulfides in energy conversion are provided.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Chemistry, Physical

Understanding the role of Zn vacancy induced by sulfhydryl coordination for photocatalytic CO2 reduction on ZnIn2S4

Yu Nie, Tingting Bo, Wei Zhou, Huilin Hu, Xiang Huang, Huaiyuan Wang, Xin Tan, Lequan Liu, Jinhua Ye, Tao Yu

Summary: Regulating the energy barrier of *COOH is crucial for the rate determining step in the photocatalytic reduction of CO2 to produce CO gas. In this study, an appropriate Zn vacancy on ZnIn2S4 was synthesized to enhance the photocatalytic CO2 reduction capacity (CO: 5.63 mmol g(-1) h(-1)) and selectivity (CO: 97.9%). Different sulfhydryl groups were used to regulate the formation of Zn vacancies in ZnIn2S4, leading to the generation of unsaturated sulfur coordination state adjacent to the Zn vacancy with fewer electrons compared to ZnIn2S4 without Zn vacancy. Experimental analysis and theoretical calculations demonstrated that the appropriate Zn vacancy shifted the Gibbs free energy of *COOH from endothermic to exothermic during the photoreduction of CO2. This work provides an engineering method to optimize cation vacancies and improve the efficiency of photocatalytic CO2 reduction by adjusting the energy barrier of intermediates.

JOURNAL OF MATERIALS CHEMISTRY A (2023)

Article Nanoscience & Nanotechnology

Synthesis of a Hexagonal Phase ZnS Photocatalyst for High CO Selectivity in CO2 Reduction Reactions

Wuqing Luo, An Li, Baopeng Yang, Hong Pang, Junwei Fu, Gen Chen, Min Liu, Xiaohe Liu, Renzhi Ma, Jinhua Ye, Ning Zhang

Summary: A hexagonal phase ZnS photocatalyst is synthesized and exhibits higher CO selectivity and better activity for CO2 reduction reactions compared to cubic ZnS. The study provides valuable insights into the synthesis and electronic structure of hexagonal ZnS for CO2 reduction reactions, which can inspire the design of highly active photocatalysts.

ACS APPLIED MATERIALS & INTERFACES (2023)

Article Chemistry, Multidisciplinary

Mimicking Photosynthesis: A Natural Z-Scheme Photocatalyst Constructed from Red Mud Bauxite Waste for Overall Water Splitting

Xuelian Yu, Jian Xu, Jiangpeng Wang, Jinyu Qiu, Xiaoqiang An, Zhuan Wang, Guocheng Lv, Libing Liao, Jinhua Ye

Summary: In this study, a new protocol of natural Z-Scheme heterostructures based on red mud bauxite waste was demonstrated. The improved component and interfacial structure enabled efficient spatial separation of photo-generated carriers for overall water splitting, making it a promising photocatalyst for solar fuel production. This work presents the first Z-Scheme heterojunction based on natural minerals and provides a new avenue for the utilization of natural minerals for advanced catalysis applications.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2023)

Article Chemistry, Physical

Natural halloysite nanotubes supported Ru as highly active catalyst for photothermal catalytic CO2 reduction

Kang Peng, Jingying Ye, Hongjie Wang, Hui Song, Bowen Deng, Shuang Song, Yihan Wang, Linjie Zuo, Jinhua Ye

Summary: This study demonstrates that Ru nanoparticles supported on natural halloysite nanotubes can enhance the photothermal catalytic activity and selectivity of CO2 methanation under continuous flow conditions. The optimized catalyst exhibits a photothermal catalytic performance of 1704 mmolCH(4) g(cat)(-1) h(-1) with 93% CH4 selectivity and 68% CO2 conversion, surpassing other Ru-based catalysts in photothermal CO2 reduction. The excellent catalytic performance is attributed to the unique mesoporous tubular structure, efficient light-to-heat conversion, and interfacial interactions between halloysite nanotubes and Ru. This method of utilizing natural minerals as support provides a convenient approach for the rational design of abundant and low-cost catalysts for efficient photothermal catalytic CO2 reduction.

APPLIED CATALYSIS B-ENVIRONMENTAL (2023)

Article Chemistry, Physical

Boosting photocatalytic overall water splitting over single-layer graphene coated metal cocatalyst

Xinmin Yang, Jiwei Cui, Xiaolu Liu, Qiqi Zhang, Defa Wang, Jinhua Ye, Lequan Liu

Summary: Cocatalyst is crucial in photocatalytic overall water splitting (POWS), but it also promotes H2-O2 recombination. In this study, a strategic approach of selectively coating single-layer graphene on metal cocatalyst was developed to suppress the backward reaction for efficient POWS. The results demonstrate the effectiveness of this method and its potential in developing cocatalysts with suppressed backward reaction for efficient POWS.

APPLIED CATALYSIS B-ENVIRONMENTAL (2023)

Article Chemistry, Physical

Highly efficient and stable photothermal catalytic CO2 hydrogenation to methanol over Ru/In2O3 under atmospheric pressure

Bowen Deng, Hui Song, Qi Wang, Jianan Hong, Shuang Song, Yanwei Zhang, Kang Peng, Hongwei Zhang, Tetsuya Kako, Jinhua Ye

Summary: A Ru/In2O3 catalyst is reported for efficient and stable photothermal CH3OH production from CO2 hydrogenation under atmospheric pressure. The catalyst demonstrates a remarkable solar CH3OH production, which is more than 50 times higher than that of pure In2O3 and surpasses other reported In2O3-based photothermal catalysts. Detailed characterizations show that the interaction between Ru and In2O3 enhances the activation of CO2 and H-2, and Ru modulates the electronic structure of In2O3, promoting the generation of oxygen vacancies for CH3OH formation. This work provides a rational design approach for efficient catalysts in solar CH3OH production from CO2 hydrogenation under mild conditions.

APPLIED CATALYSIS B-ENVIRONMENTAL (2023)

Article Multidisciplinary Sciences

Cu-based high-entropy two-dimensional oxide as stable and active photothermal catalyst

Yaguang Li, Xianhua Bai, Dachao Yuan, Chenyang Yu, Xingyuan San, Yunna Guo, Liqiang Zhang, Jinhua Ye

Summary: Cu-based high-entropy two-dimensional oxide is synthesized using a PVP templated method and shows enhanced sintering resistance and CO2 hydrogenation activity. It achieves a record photochemical energy conversion efficiency in photothermal CO2 hydrogenation under ambient sunlight irradiation.

NATURE COMMUNICATIONS (2023)

Article Multidisciplinary Sciences

Promoting water dissociation for efficient solar driven CO2 electroreduction via improving hydroxyl adsorption

Xin Chen, Junxiang Chen, Huayu Chen, Qiqi Zhang, Jiaxuan Li, Jiwei Cui, Yanhui Sun, Defa Wang, Jinhua Ye, Lequan Liu

Summary: In this study, a strategy of promoting water dissociation on Bi2O2CO3 is reported to achieve high solar to formate energy conversion in CO2 electroreduction. The authors identify CO3* as the key surface species for formate formation through electron spin resonance measurements and in situ Raman spectroscopy combined with isotopic labelling. The efficiency of solar to formate energy conversion reaches as high as 13.3% when combined with a photovoltaic device.

NATURE COMMUNICATIONS (2023)

Article Chemistry, Physical

Polaron-Mediated Transport in BiVO4 Photoanodes for Solar Water Oxidation

Hao Wu, Lei Zhang, Songying Qu, Aijun Du, Junwang Tang, Yun Hau Ng

Summary: Hydrogen dopants and oxygen vacancies are important in BiVO4 photoanodes, but the impact of hydrogenation on charge transport, particularly electron small polaron formation, is not well understood. This study demonstrates that mild hydrogenation of nanoporous BiVO4 reduces the charge transport barrier, as shown by thermally activating photocurrent responses. The hydrogen atoms occupy oxygen vacancies, reducing the activation energy and facilitating electron small polaron transport. A BiVO4 photoanode with NiFeOx cocatalyst achieves an applied-bias photon-to-current efficiency of 1.91% at 0.58 V vs RHE. This study expands the understanding of hydrogen doping beyond conventional donor density/surface chemisorption mediations to include small polaron hopping.

ACS ENERGY LETTERS (2023)

Article Chemistry, Physical

Ni Coated with N-doped Graphene Layer as Active and Stable H2 Evolution Cocatalysts for Photocatalytic Overall Water Splitting

Xiaolu Liu, Xinmin Yang, Jiwei Cui, Chenhe Wu, Yanhui Sun, Xuemei Du, Junxiang Chen, Jinhua Ye, Lequan Liu

Summary: This study demonstrates the great potential of using highly stable and active Ni-based photocatalysts for photocatalytic overall water splitting (POWS). Ni nanoparticles encapsulated in a nitrogen-doped ultrathin graphene layer were found to be an active, stable, and low-cost cocatalyst for POWS. The H-2 evolution rate over this cocatalyst was significantly higher than that of typical Pt cocatalyst, and the oxidation of Ni during the reaction was effectively suppressed through N-doped graphene coating. In addition to improving charge carrier dynamics, the introduction of N reduced the apparent activation energy of POWS.

ACS CATALYSIS (2023)

Article Chemistry, Multidisciplinary

Near-Infrared Plasmon-Driven Nitrogen Photofixation Achieved by Assembling Size-Controllable Gold Nanoparticles on TiO2 Nanocavity Arrays

Hao Huang, Shengyao Wang, Xingce Fan, Davin Philo, Liping Fang, Wenguang Tu, Teng Qiu, Zhigang Zou, Jinhua Ye

Summary: Au NPs and TiO2 are integrated via a solid-state dewetting technique, and the plasmonic frequencies range from visible to NIR region. The system allows for the photofixation of N-2 to NH3 under NIR light, offering a carbon-free and sustainable strategy for NH3 production. The Au/TiO2 plasmonic photocatalyst system shows stable performance and has the potential for better utilization of solar energy for nitrogen fixation.

ACS SUSTAINABLE CHEMISTRY & ENGINEERING (2023)

Article Chemistry, Applied

Selectivity control of photocatalytic CO2 reduction over ZnS-based nanocrystals: A comparison study on the role of ionic cocatalysts

Hong Pang, Fumihiko Ichihara, Xianguang Meng, Lijuan Li, Yuqi Xiao, Wei Zhou, Jinhua Ye

Summary: This study investigates the influence of different transition metal ions on the photocatalytic CO2 reduction using copper-doped ZnS nanocrystals as the main catalyst. It was found that Ni2+, Co2+, and Cd2+ enhanced CO2 reduction, while Fe2+ suppressed the photocatalytic activity. The modified ZnS:Cu photocatalysts demonstrated tunable product selectivity, with Ni2+ and Co2+ showing high selectivity for syngas production and Cd2+ displaying remarkable formate selectivity.

JOURNAL OF ENERGY CHEMISTRY (2023)

Review Chemistry, Multidisciplinary

Electrochemical reduction of carbon dioxide to multicarbon (C2+) products: challenges and perspectives

Bin Chang, Hong Pang, Fazal Raziq, Sibo Wang, Kuo-Wei Huang, Jinhua Ye, Huabin Zhang

Summary: In this review, the recent progress and challenges in preparing C2+ products are discussed. The recent advancements in carbon-carbon coupling results and proposed mechanisms are elaborated, along with the complex scenarios involved in the initial CO2 activation process, catalyst micro/nanostructure design, and mass transfer conditions optimization. The synergistic realization of high C2+ product selectivity through catalyst design and the influence of electrolytes using theoretical calculation analysis and machine learning prediction are also proposed. The in situ/operando techniques for tracking structural evolution and recording reaction intermediates during electrocatalysis are elaborated, as well as insights into triphasic interfacial reaction systems with improved C2+ selectivity.

ENERGY & ENVIRONMENTAL SCIENCE (2023)

Article Chemistry, Physical

Efficient and Selective Photocatalytic Oxidation of CH4 over Fe Single-Atom-Incorporated MOFs under Visible Light

Chengcheng Zhang, Yingkui Yan, Hubiao Huang, Xinsheng Peng, Hui Song, Jinhua Ye, Li Shi

Summary: Fe@PCN-222 is an efficient and selective photocatalyst that can oxidize CH4 to liquid oxygenates at room temperature using visible light. The presence of Fe single-atoms promotes the transfer of photogenerated electrons and activates H2O2, resulting in a substantial improvement in the selectivity and activity of liquid oxygenate production.

ACS CATALYSIS (2023)

Review Chemistry, Physical

Intermediates and their conversion into highly selective multicarbons in photo/electrocatalytic CO2 reduction reactions

Long Yang, Amol U. Pawar, Ramesh Poonchi Sivasankaran, Donkeun Lee, Jinhua Ye, Yujie Xiong, Zhigang Zou, Yong Zhou, Young Soo Kang

Summary: This review focuses on the identification, conversion, reaction kinetics, pathways, and mechanisms of intermediates, as well as the efficiency and selectivity of multicarbon product formations during photocatalytic and electrocatalytic CO2 reduction. Theoretical simulations and calculations provide deeper insights into this process. Future research directions and inspirations are also included to guide the integration of catalytic systems.

JOURNAL OF MATERIALS CHEMISTRY A (2023)

No Data Available