4.6 Article

On native point defects in ZnSe

Journal

APPLIED PHYSICS LETTERS
Volume 120, Issue 23, Pages -

Publisher

AIP Publishing
DOI: 10.1063/5.0092736

Keywords

-

Funding

  1. AFOSR [FA9550-21-1-0383]

Ask authors/readers for more resources

Through density functional theory calculations, we have investigated native defects in pure ZnSe and found that zinc vacancy is one of the most prevalent defects, while zinc interstitial and selenium vacancy are also common near specific energy levels. Additionally, we discovered that a divacancy complex consisting of nearby zinc and selenium vacancies has a favorable binding energy throughout the bandgap.
Aiming at a fundamental understanding of the defect chemistry of pure ZnSe for optical and quantum applications, systematic density functional theory calculations with hybrid exchange-correlation functionals were performed to build an accurate database of native defects in ZnSe, including isolated defects and first nearest-neighbor defect-defect complexes. From the defect formation energies, zinc vacancy is found to be the most prevalent defect as the Fermi level approaches the conduction band edge, while zinc interstitial in the selenium tetrahedron and selenium vacancy become the most prevalent defects as the Fermi level approaches the valence band maximum. The divacancy complex, consisting of first nearest-neighboring zinc and selenium vacancies, is also found to have a favorable binding energy across the entire bandgap. Its formation energy is, however, always higher than either the isolated zinc or selenium vacancy, meaning it will never be the predominant defect in equilibrium. Finally, a point defect with extended spin coherence in Fluorine-implanted ZnSe was recently discovered, and it was found to exhibit a broad emission peak centered at 2.28 eV. The identity of this defect was determined to be either zinc vacancy or its associated complex according to the electron paramagnetic resonance measurements. Explicit simulations of the optical signatures of all zinc vacancy-related native defects were conducted here, showing that both zinc vacancy and divacancy are the most likely native defect contributors to that peak. Published under an exclusive license by AIP Publishing.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available