4.6 Article

Convolutional Neural Networks for the Evaluation of Chronic and Inflammatory Lesions in Kidney Transplant Biopsies

Journal

AMERICAN JOURNAL OF PATHOLOGY
Volume 192, Issue 10, Pages 1418-1432

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.ajpath.2022.06.009

Keywords

-

Categories

Funding

  1. ERACoSysMed initiative (SysMIFTA project), European Union [9003035004]
  2. Dutch Kidney Foundation [17OKG23, 21OK+012]
  3. Dutch Cancer Society [KUN 2014-7032]

Ask authors/readers for more resources

This study investigated the potential of convolutional neural networks (CNNs) to quantify inflammation and chronic features in kidney transplant biopsies. CNNs were applied on whole-slide image pairs to quantify various tissue features and showed high correlation with pathologists' scores. The results suggest that CNNs can provide objective quantitative information and improve kidney transplant diagnostics.
In kidney transplant biopsies, both inflammation and chronic changes are important features that predict long-term graft survival. Quantitative scoring of these features is important for transplant diagnostics and kidney research. However, visual scoring is poorly reproducible and labor intensive. The goal of this study was to investigate the potential of convolutional neural networks (CNNs) to quantify inflammation and chronic features in kidney transplant biopsies. A structure segmentation CNN and a lymphocyte detection CNN were applied on 125 whole-slide image pairs of periodic acid-Schiff- and CD3-stained slides. The CNN results were used to quantify healthy and sclerotic glomeruli, interstitial fibrosis, tubular atrophy, and inflammation within both nonatrophic and atrophic tubuli, and in areas of interstitial fibrosis. The computed tissue features showed high correlation with Banff lesion scores of five pathologists (A.A., A.Dend., J.H.B., J.K., and T.N.). Analyses on a small subset showed a moderate correlation toward higher CD3+ cell density within scarred regions and higher CD3+ cell count inside atrophic tubuli correlated with long-term change of estimated glomerular filtration rate. The presented CNNs are valid tools to yield objective quantitative information on glomeruli number, fibrotic tissue, and inflammation within scarred and non-scarred kidney parenchyma in a reproducible manner. CNNs have the potential to improve kidney transplant diagnostics and will benefit the community as a novel method to generate surrogate end points for large-scale clinical studies. (Am J Pathol 2022, 192: 1418-1432; https://doi.org/10.1016/j.ajpath.2022.06.009)

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available