4.8 Article

Versatile Sequential Casting Processing for Highly Efficient and Stable Binary Organic Photovoltaics

Journal

ADVANCED MATERIALS
Volume 34, Issue 33, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.202203379

Keywords

binary devices; bulk-heterojunctions; organic solar cells; phase-separation; sequential casting

Funding

  1. National Natural Science Foundation of China [21734008, 52173185, 5212780017, 61721005]
  2. National Key Research and Development Program of China [2019YFA0705900]
  3. Zhejiang University
  4. Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]

Ask authors/readers for more resources

This study investigates the advantages of using the sequential casting (SC) method for bulk heterojunction (BHJ)-based organic solar cells (OSCs). It is found that SC processing can achieve better morphology and device performance compared to the widely-used blend casting (BC) method. The observations on phase separation and vertical distribution inspire the proposal of the swelling-intercalation phase-separation model to explain the morphology evolution during SC processing. Moreover, the vertical phase segregation is found to improve device performance through affecting charge transport and collection processes.
Forming an ideal bulk heterojunction (BHJ) morphology is a critical issue governing the photon to electron process in organic solar cells (OSCs). Complementary to the widely-used blend casting (BC) method for BHJ construction, sequential casting (SC) can also enable similar or even better morphology and device performance for OSCs. Here, BC and SC methods on three representative donor:acceptor (D:A) blends are utilized, that is, PM6:PC71BM, PM6:IT-4F and PM6:L8-BO. Higher power conversion efficiencies (PCEs) in all cases by taking advantage of beneficial morphology from SC processing are achieved, and a champion PCE of 18.86% (certified as 18.44%) based on the PM6:L8-BO blend is reached, representing the record value among binary OSCs. The observations on phase separation and vertical distribution inspire the proposal of the swelling-intercalation phase-separation model to interpret the morphology evolution during SC processing. Further, the vertical phase segregation is found to deliver an improvement of device performance via affecting the charge transport and collection processes, as evidenced by the D:A-ratio-dependent photovoltaic properties. Besides, OSCs based on SC processing show advantages on device photostability and upscale fabrication. This work demonstrates the versatility and efficacy of the SC method for BHJ-based OSCs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available