4.7 Article

Increased Atmospheric CO2 Growth Rate during El Nino Driven by Reduced Terrestrial Productivity in the CMIP5 ESMs

Journal

JOURNAL OF CLIMATE
Volume 29, Issue 24, Pages 8783-8805

Publisher

AMER METEOROLOGICAL SOC
DOI: 10.1175/JCLI-D-14-00672.1

Keywords

-

Funding

  1. Korea Meteorological Administration Research and Development Program [KMIPA 2015-2092]
  2. National Research Foundation [NRF-2014R1A2A2A01003827]

Ask authors/readers for more resources

Better understanding of factors that control the global carbon cycle could increase confidence in climate projections. Previous studies found good correlation between the growth rate of atmospheric CO2 concentration and El Nino-Southern Oscillation (ENSO). The growth rate of atmospheric CO2 increases during El Nino but decreases during La Nina. In this study, long-term simulations of the Earth system models (ESMs) in phase 5 of the Coupled Model Intercomparison Project archive were used to examine the interannual carbon flux variability associated with ENSO. The ESMs simulate the relationship reasonably well with a delay of several months between ENSO and the changes in atmospheric CO2. The increase in atmospheric CO2 associated with El Nino is mostly caused by decreasing net primary production (NPP) in the ESMs. It is suggested that NPP anomalies over South Asia are at their maxima during boreal spring; therefore, the increase in CO2 concentration lags 4-5 months behind the peak phase of El Nino. The decrease in NPP during El Nino may be caused by decreased precipitation and increased temperature over tropical regions. Furthermore, systematic errors may exist in the ESM-simulated temperature responses to ENSO phases over tropical land areas, and these errors may lead to an overestimation of ENSO-related NPP anomalies. In contrast, carbon fluxes from heterotrophic respiration and natural fires are likely underestimated in the ESMs compared with offline model results and observational estimates, respectively. These uncertainties should be considered in long-term projections that include climate-carbon feedbacks.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available