4.7 Article

Biochar derived from agricultural wastes and wood residues for sustainable agricultural and environmental applications

Journal

Publisher

KEAI PUBLISHING LTD
DOI: 10.1016/j.iswcr.2021.09.006

Keywords

Lignocellulosic biomass; Biochar; Soil amendment; Carbon sequestration; Agricultural waste management

Funding

  1. Ratchadaphisek Somphot Endowment Fund (2014), Chulalongkorn University [CU-57-090-CC]

Ask authors/readers for more resources

This study analyzed five different types of biochar produced from agricultural wastes and wood residues, finding that they possess suitable properties for soil amendment and carbon sequestration, but significant differences exist in specific surface area, average pore diameter, pH, etc.
Lignocellulosic biomass can be circulated to produce many materials and products, including biochar. This study analyzed five different types of biochar produced from agricultural wastes and wood residues. The raw materials included three agricultural by-products: corncob, cassava rhizome, rice husk, and two types of wood residues: rain tree (Samanea saman (Jacq.) Merr.) and krachid (Streblus ilicifolius (Vidal) Corner.). The biochar were made in patented retorts with locally-appropriated technology at a temperature range of 450-500 degrees C. This research focuses on the primary physicochemical properties and biochar components, allowing biochar to become a vital material to support sustainable agriculture and the environment. Biochar properties used for agriculture consist of specific surface area, total pore volume, average pore diameter, pH, electrical conductivity (EC), and cation exchange capacity (CEC). The properties that benefit the environmental purposes are the element: carbon (C), hydrogen (H), nitrogen (N), oxygen (O), and the molar ratio of H/C, O/C, and C/N. The study found that all five types of biochar contained suitable properties for soil amendment and carbon sequestration. However, significant differences were shown in specific surface area, average pore diameter, pH, CEC, and EC of various biochar. Based on O/C and H/C ratios, all five types of biochar persisted in soil from 100 to over 1,000 years. (C) 2021 International Research and Training Center on Erosion and Sedimentation, China Water and Power Press, and China Institute of Water Resources and Hydropower Research. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available