4.8 Article

An enhanced kinetics and ultra-stable zinc electrode by functionalized boron nitride intermediate layer engineering

Journal

ENERGY STORAGE MATERIALS
Volume 45, Issue -, Pages 1175-1182

Publisher

ELSEVIER
DOI: 10.1016/j.ensm.2021.11.018

Keywords

Aqueous Zn-ion battery; Zn metal electrode; Boron nitride nanosheets; Sulfonate groups; Desolvation process

Funding

  1. Natural Science Foundation of Jiangsu Province [BK20210480]

Ask authors/readers for more resources

In this study, an intermediate layer of sulfonate group modified boron nitride nanosheets was designed to regulate the electrochemical behavior of zinc, effectively suppressing dendrite growth and side reactions. The resulting zinc anode showed enhanced performance in aqueous zinc-ion batteries.
The current application of zinc (Zn) anode for aqueous Zn-ion batteries (AZIBs) is faced with several challenges, such as the Zn dendrite growth, hydrogen evolution reaction and by-product generation. Here, an intermediate layer of sulfonate group modified boron nitride nanosheets (S-BN) has been rationally designed and harnessed to regulate Zn plating/stripping behavior and mitigate the side reaction with electrolyte. Benefiting from the nanoscale cavities and surface anionic charge groups, the S-BN intermediate layer endows a dendrite-free electrodeposition behavior via an advanced desolvation process and even interface electronic field. As expected, the S-BN@Zn symmetrical cell enables long-term cycling of 2500 h under 2 mAh & BULL;cm(-2) with a small plating/stripping overpotential of around 45 mV. When coupled with Na2V6O16 & BULL;1.63H(2)O (NVO) cathode, the S-BN@Zn/NVO battery can operate stably up to 1200 cycles, implying the superior durability of S-BN@Zn anode. Accordingly, this novel Zn diffusion intermediate layer provides a promising approach to significantly enhance the anode electrochemical performance of AZIBs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
Article Chemistry, Physical

Quantifying the impact of operating temperature on cracking in battery electrodes, using super-resolution of microscopy images and stereology

Orkun Furat, Donal P. Finegan, Zhenzhen Yang, Matthias Neumann, Sangwook Kim, Tanvir R. Tanim, Peter Weddle, Kandler Smith, Volker Schmidt

Summary: The operating temperature has a significant impact on the degradation behavior of batteries. This study investigates the structural degradation of lithium-ion positive electrodes under different operating temperatures, and finds that particle porosity increases with higher cycling temperature, while particle surface area remains similar across different cycling-temperature aging conditions.

ENERGY STORAGE MATERIALS (2024)

Article Chemistry, Physical

Ion-intercalation architecture for robust functionalization of two-dimensional MXenes

Junyan Li, Ming Lu, Weijia Zheng, Wei Zhang

Summary: MXenes are two-dimensional materials with unique structures and properties, which have attracted significant scientific interest. Ion intercalation, as an important mechanism, plays a crucial role in regulating the electronic and chemical properties of MXene materials. This review provides an overview of the interaction events between ions and MXenes, including advanced characterization techniques, influencing factors, mechanisms, and functionalization roles of ion intercalation.

ENERGY STORAGE MATERIALS (2024)

Article Chemistry, Physical

Zwitterion as electrical double layer regulator to in-situ formation of fluorinated interphase towards stable zinc anode

Zhengtai Zha, Tianjiang Sun, Diantao Li, Tao Ma, Weijia Zhang, Zhanliang Tao

Summary: A novel zwitterion additive is developed to improve the electrochemical performance and cycling stability of aqueous zinc batteries. The zwitterion forms a stable solid electrolyte interphase on the electrode surface, isolating the zinc anode from the electrolytes and enabling fast zinc ion migration. The proposed electrolyte shows promising results in symmetric cells and full cells, with long cycling stability and high capacity retention.

ENERGY STORAGE MATERIALS (2024)

Article Chemistry, Physical

Promoting homogeneous lithiation of silicon anodes via the application of bifunctional PEDOT:PSS/PEG composite binders

Nyung Joo Kong, Myeong Seon Kim, Jae Hyun Park, Jongbok Kim, Jungho Jin, Hyun-Wook Lee, Seok Ju Kang

Summary: Polymeric conducting binders have significant research value as they can serve as both binders and conducting agents, increasing the proportion of active materials in batteries and the volumetric energy density. This study explores the potential of a composite of PEDOT:PSS and polyethylene glycol (PEG) as a high-performing binder for silicon anodes. The addition of PEG polymer enhances the conductivity of PEDOT:PSS and improves the mechanical properties of the silicon anode, resulting in extended cycle endurance. The use of operando optical microscopy allows for direct observation of the binder's operation. Consequently, the bifunctional PEDOT:PSS/PEG binder shows promise for high-performance lithium-ion battery binders.

ENERGY STORAGE MATERIALS (2024)

Article Chemistry, Physical

Temperature-dependent viscoelastic liquid MOFs based cellulose gel electrolyte for advanced lithium-sulfur batteries over an extensive temperature range

Yangze Huang, Lixuan Zhang, Jiawen Ji, Chenyang Cai, Yu Fu

Summary: This study proposed a novel temperature-dependent viscoelastic liquid electrolyte and a hollow transition bi-metal selenide as the sulfur host material to address the issues in Li-S batteries. The experiments showed promising results in stabilizing the anode and improving cycling performance.

ENERGY STORAGE MATERIALS (2024)

Article Chemistry, Physical

Recent advances in anode design for mild aqueous Zn-ion batteries

Ao Yu, Wei Zhang, Nimanyu Joshi, Yang Yang

Summary: This review provides a comprehensive overview of research progress in ZIB anodes, including protective coating layers on zinc surfaces and intercalated anode materials. By designing protective coating layers and selecting appropriate intercalated anode materials, the inherent limitations of zinc metal anode can be overcome, leading to improved reliability and performance of ZIBs.

ENERGY STORAGE MATERIALS (2024)

Article Chemistry, Physical

Sandwich-structured anode enables high stability and enhanced zinc utilization for aqueous Zn-ion batteries

Xin Wang, Yumiao Tian, Konghua Yang, Chenhui Ma, Wenqiang Lu, Xiaofei Bian, Nan Chen, Heng Jiang, Yan Li, Xing Meng, Pengyue Gao, Dong Zhang, Fei Du

Summary: Researchers developed a new sandwich deposition approach using boron nitride layer as a current collector, which enhances the performance of aqueous zinc-ion batteries.

ENERGY STORAGE MATERIALS (2024)

Article Chemistry, Physical

Stable sodium-metal batteries with a hierarchical structured electrode toward reversible confinement of Na dendrites

Sang Jun Lee, Dongwoo Kang, Dong Yeol Hyeon, Dong Seok Kim, Suyoon Eom, Su Hwan Jeong, Dong Park Lee, Dawon Baek, Jou-Hyeon Ahn, Gyeong Hee Ryu, Kwi-Il Park, San Moon, Joo-Hyung Kim

Summary: This study utilizes the ice-templating method to create a self-supporting three-dimensional hierarchical porous structure, which effectively inhibits sodium dendrite growth and improves the performance and longevity of sodium-metal batteries.

ENERGY STORAGE MATERIALS (2024)

Article Chemistry, Physical

Enable reversible conversion reaction of copper fluoride batteries by hydroxyl solution and anion acceptor

Yifan Yu, Meng Lei, Yangyang Liu, Keyi Chen, Chuanzhong Lai, Jiulin Hu, Chilin Li

Summary: Metal fluorides as conversion-reaction cathodes have advantages such as low cost, environmentally friendly, and high energy density. In this study, a hydroxyl-rich copper fluoride (Cu2(OH)3F) was proposed as a conversion cathode, coupled with an electrolyte additive engineering, to address the poor reversibility issue. The presence of OH in Cu2(OH)3F enables effective suppression of Cu+ dissolution, resulting in better reaction reversibility and kinetics.

ENERGY STORAGE MATERIALS (2024)