4.6 Article

Improved Precision-Cut Liver Slice Cultures for Testing Drug-Induced Liver Fibrosis

Journal

FRONTIERS IN MEDICINE
Volume 9, Issue -, Pages -

Publisher

FRONTIERS MEDIA SA
DOI: 10.3389/fmed.2022.862185

Keywords

PCLS; DILI; hepatic stellate; VPA; human; mouse; in vitro

Funding

  1. Vrije Universiteit Brussel
  2. Fonds Wetenschappelijk Onderzoek (FWO) [G042719N]
  3. FWO Post-doc mandate [1243121N, 1192920 N]

Ask authors/readers for more resources

Precision cut liver slices (PCLS) can serve as an exceptional in vitro liver model by retaining the complex physiological architecture of the native liver. Optimized PCLS cultures allow for drug-induced liver fibrosis modeling.
In vitro models of human liver disease often fail to mimic the complex 3D structures and cellular organizations found in vivo. Precision cut liver slices (PCLS) retain the complex physiological architecture of the native liver and therefore could be an exceptional in vitro liver model. However, the production of PCLS induces a spontaneous culture-induced fibrogenic reaction, limiting the application of PCLS to anti-fibrotic compounds. Our aim was to improve PCLS cultures to allow compound-induced fibrosis induction. Hepatotoxicity in PCLS cultures was analyzed by lactate dehydrogenase leakage and albumin secretion, while fibrogenesis was analyzed by qRT-PCR and western blot for hepatic stellate cell (HSC) activation markers and collagen 6 secretion by enzyme-linked immunosorbent assays (ELISA). We demonstrate that supplementation of 3 mm mouse PCLS cultures with valproate strongly reduces fibrosis and improves cell viability in our PCLS cultures for up to 5 days. Fibrogenesis can still be induced both directly and indirectly through exposure to TGF beta and the hepatotoxin acetaminophen, respectively. Finally, human PCLS cultures showed similar but less robust results. In conclusion, we optimized PCLS cultures to allow for drug-induced liver fibrosis modeling.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available