4.5 Article

High-level biosynthesis of norleucine in E. coli for the economic labeling of proteins

Journal

JOURNAL OF BIOTECHNOLOGY
Volume 235, Issue -, Pages 100-111

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jbiotec.2016.04.033

Keywords

Norleucine; Biosynthesis; Non-canonical amino acid; Deletion; Acetolactate synthase; Bioreactor

Funding

  1. Austrian Science Fund (FWF) [W901]
  2. Federal Ministry of Science, Research and Economy (BMWFW)
  3. Federal Ministry of Traffic, Innovation and Technology (bmvit)
  4. Styrian Business Promotion Agency SFG
  5. Standortagentur Tirol
  6. Government of Lower Austria
  7. ZIT-Technology Agency of the City of Vienna through the COMET
  8. Austrian Research Promotion Agency FFG (FFG K2) [282482]
  9. Austrian Science Fund (FWF) [W 901] Funding Source: researchfish

Ask authors/readers for more resources

The residue-specific labeling of proteins with non-canonical amino acids (ncAA) is well established in shake flask cultures. A key aspect for the transfer of the methodology to larger scales for biotechnological applications is the cost of the supplemented ncAAs. Therefore, we established a scalable bioprocess using an engineered host strain for the biosynthesis of the methionine analog norleucine at titers appropriate for the efficient and economic labeling of proteins. To enhance the biosynthesis of norleucine, which is a side-product of the branched chain amino acid pathway, we deleted all three acetolactate synthase isoforms of the methionine auxotrophic Escherichia coli expression strain B834(DE3). Additionally, we overexpressed leuABCD to boost the biosynthesis of norleucine. We systematically analyzed the production of norleucine under the conditions for its residue-specific incorporation in bioreactor cultures that had a 30-fold higher cell density than shake flask cultures. Under optimized conditions, 5 g/L norleucine was biosynthesized. This titer is two times higher than the standard supplementation with norleucine of a culture with comparable cell density. We expect that our metabolically engineered strain for the improved biosynthesis of norleucine in combination with the proposed bioprocess will facilitate the efficient residue-specific labeling of proteins at a reasonable price in scales beyond the shake flask. (C) 2016 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available