4.8 Article

Thermoacoustic energy harvesting using thermally-stabilized polyacrylonitrile nanofibers

Journal

NANO ENERGY
Volume 95, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.nanoen.2022.106995

Keywords

Thermoacoustic; Piezoelectric; Polyacrylonitrile; Nanofibers; Acoustoelectric; High temperature

Funding

  1. key project of the Natural Science and Foundation of Tianjin, China [20JCZDJC00350]
  2. Tiangong University (TGU) , China [TGF-21-B8]
  3. Australian Research Council (ARC) , Australia [DP210100838]

Ask authors/readers for more resources

This study demonstrates the capability of thermally stabilized polyacrylonitrile nanofiber membranes to convert thermoacoustic waves into electric energy at high temperatures. It provides a new material option for developing acoustoelectric energy harvesters.
The piezoelectric conversion of thermoacoustic waves into electricity is a simple, flexible, and low-cost approach to recycle waste heat. It requires sufficient energy conversion and high material sustainability at high temperatures but remains a challenge to attain. This study demonstrates that thermally stabilized polyacrylonitrile (PAN) nanofiber membranes prepared by electrospinning and a program of heat treatment can effectively and stably convert thermoacoustic waves into sizeable electric energy at a temperature as high as 450 degrees C. Under mono-frequency sound (118 dB, 230 Hz), the membrane device (working area 3 x 3 cm(2)) can produce an open circuit voltage as high as 118 V and short-circuit current of 12 mu A (power density 392 mW/m(2)) in a broad temperature range (room temperature-450 degrees C). The working temperature has little effect on acoustoelectric output. We used a mini-thermoacoustic engine to generate thermoacoustic sound and in-situ converted the thermoacoustic waves into electric power using our acoustoelectric device. Under thermoacoustic waves, where the acoustoelectric device was heated to 280 degrees C, the device worked stably for at least 2 h. The electric energy generated by a single device (peak outputs 102 V and 10 mu A from a 3 x 3 cm(2) device) can either run commercial electronic devices (e.g., 30 LEDs) or be stored in an energy storage device such as a lithium battery and capacitor for further use. Our study differs from the prior arts in that it demonstrates the stable acoustoelectric conversion capability of thermally stabilized PAN nanofiber membranes at high temperatures and their ability to convert heat into electricity through thermoacoustic waves. This novel acoustoelectric material may be useful to develop acoustoelectric energy harvesters for various applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
Article Chemistry, Physical

Gamma glycine enhances efficiency of organic hybrid piezoelectric-triboelectric nanogenerators

Sirinya Ukasi, Paritta Jutapukti, Chiranicha Ninthub, Nattapong Pinpru, Phakkhananan Pakawanit, Wanwilai Vittayakorn, Satana Pongampai, Naratip Vittayakorn, Thitirat Charoonsuk

Summary: This study explores the enhancement of electrical output of flexible hybrid piezoelectric-triboelectric nanogenerators by incorporating gamma-glycine into fully organic composites. The research demonstrates the importance of optimized concentrations of gamma-glycine and chitosan in achieving superior performance. The study identifies the critical content of gamma-glycine that leads to the highest output signal, and provides theoretical explanations for this observation.

NANO ENERGY (2024)

Article Chemistry, Physical

Portable triboelectric-electromagnetic hybrid biomechanical energy harvester for driving various functional light-emitting diodes with a wide range of wavelengths

Yoonsang Ra, Yu-seop Kim, Seonmo Yang, Namgyu Kang, Gyuwon Oh, Chungyeon Cho, Sangmin Lee, Dongwhi Choi

Summary: In this study, a portable energy harvester (STEP) was proposed to drive various functional LEDs using biomechanical energy. The roles and functionalities of a triboelectric nanogenerator (TENG) and electromagnetic generator (EMG) in the hybrid energy harvester were experimentally demonstrated, and the necessity of hybridization for LED-involved devices was described. The STEP showed promising potential as an effective energy supply strategy for various functional LEDs in related industries.

NANO ENERGY (2024)

Article Chemistry, Physical

Flexoelectrically augmented triboelectrification enabled self-power wireless smart home control system

Dae Sol Kong, Kyung Hoon Kim, Ying Chieh Hu, Jong Hun Kim, Inseo Kim, Jeongwan Lee, Joonhyuk Lee, Won Hyuk Shon, Hanjin Yoo, Chul-Un Ro, Seungsu Lee, Hyoungjeen Jeen, Minbaek Lee, Minseok Choi, Jong Hoon Jung

Summary: With the rapid development of the Internet of Things and artificial intelligence, smart home has emerged to fulfill the security, convenience, and energy-saving issues of modern life. A flexoelectric mica crystal is used to augment the finger touch-driven triboelectric output for operating a wireless and multichannel smart home controller. This work provides important ingredients for enhancing triboelectric output and realizing a convenient, multifunctional, cost-effective, and adaptable smart home control system without batteries.

NANO ENERGY (2024)

Article Chemistry, Physical

Enhance vortices vibration with Y-type bluff body to decrease arousing wind speed and extend range for flag triboelectric energy harvester

Yi Han, Fang Wu, Xiaozhen Du, Zihao Li, Haixiang Chen, Dongxing Guo, Junlei Wang, Hong Yu

Summary: This paper presents a novel type of triboelectric nanogenerator that utilizes wind energy, with a Y-type bluff body to enhance vibration and output power. The application of this generator successfully provides power for a wireless temperature and humidity sensor.

NANO ENERGY (2024)

Article Chemistry, Physical

Surface-interspersed nanoparticles induced cathode-electrolyte interphase enabling stable cycling of high-voltage LiCoO2

Wen Zhang, Fangyuan Cheng, Miao Chang, Yue Xu, Yuyu Li, Shixiong Sun, Liang Wang, Leimin Xu, Qing Li, Chun Fang, Meng Wang, Yuhao Lu, Jiantao Han, Yunhui Huang

Summary: This study successfully induced the formation of a uniform and robust CEI by constructing ZrO2 nano-rivets on the surface of LCO, stabilizing the surface of high-voltage LCO and facilitating lithium-ion diffusion.

NANO ENERGY (2024)

Article Chemistry, Physical

Asperity shape in flexoelectric/triboelectric contacts

Karl P. Olson, Laurence D. Marks

Summary: This paper investigates the role of contacting shapes in triboelectricity and provides scaling rules for designing energy harvesting devices.

NANO ENERGY (2024)

Article Chemistry, Physical

Externally motionless triboelectric nanogenerator based on vortex-induced rolling for omnidirectional wind energy harvesting

Jong-An Choi, Jingu Jeong, Mingyu Kang, Hee-Jin Ko, Taehoon Kim, Keun Park, Jongbaeg Kim, Soonjae Pyo

Summary: Wind-driven triboelectric nanogenerators (WTENGs) are a promising emerging technology for sustainable wind energy harvesting, offering high output performance, lightweight design, and compact dimensions. This study introduces an innovative WTENG design that leverages a rolling-based mechanism to achieve efficient omnidirectional wind energy harvesting.

NANO ENERGY (2024)

Article Chemistry, Physical

Flag-type hybrid nanogenerator utilizing flapping wakes for consistent high performance over an ultra-broad wind speed range

Liwei Dong, Qian Tang, Chaoyang Zhao, Guobiao Hu, Shuai Qu, Zicheng Liu, Yaowen Yang

Summary: This paper proposes a novel hybrid scheme for flag-type nanogenerators (FNGs) that enhances their performance and broadens their operational wind speed ranges by harnessing the synergistic potential of two aerodynamic behaviors. The proposed flag-type triboelectric-piezoelectric hybrid nanogenerator (FTPNG) integrates flapping piezoelectric flags (PEFs) and a fluttering triboelectric flag (TEF). The FTPNG achieves significant power generation and a broad wind speed range, surpassing other FNGs, making it suitable for various self-powered systems and Internet of Things applications.

NANO ENERGY (2024)

Review Chemistry, Physical

Marine biomaterial-based triboelectric nanogenerators: Insights and applications

Yunmeng Li, Xin Liu, Zewei Ren, Jianjun Luo, Chi Zhang, Changyong (Chase) Cao, Hua Yuan, Yaokun Pang

Summary: The demand for green and eco-friendly materials is growing due to increasing environmental concerns related to traditional petroleum-based products. Marine biomaterials have emerged as a promising alternative, thanks to their abundant availability, biocompatibility, biodegradability, and low toxicity. In this review, we discuss the development and applications of triboelectric nanogenerators (TENGs) based on marine biomaterials. The operational modes, foundational principles, intrinsic qualities, and advantages of marine biomaterials commonly used in TENG designs are highlighted. Approaches to enhance the efficacy of TENGs derived from marine biomaterials are also discussed, along with documented applications from existing literature. Furthermore, the existing challenges and future directions in marine biomaterial-inspired TENGs are explored.

NANO ENERGY (2024)

Article Chemistry, Physical

Pathway to high performance, low temperature thin-film solid oxide cells grown on porous anodised aluminium oxide

Matthew P. Wells, Adam J. Lovett, Yizhi Zhang, Zhongxia Shang, Kosova Kreka, Babak Bakhit, Haiyan Wang, Albert Tarancon, Judith L. MacManus-Driscoll

Summary: Reversible solid oxide cells (rSOCs) offer a promising solution to efficient energy conversion, but have been limited in portable power and electrolysis applications due to excessive polarisation resistance of the oxygen electrode at low temperatures. This study demonstrates the growth of symmetric and complete rSOC structures with reduced polarisation resistance by tuning oxygen vacancy through annealing, providing a promising route towards high-performance rSOC devices for portable power applications.

NANO ENERGY (2024)

Article Chemistry, Physical

Construction of low dielectric aqueous electrolyte with ethanol for highly stable Zn anode

Kangkang Bao, Minghui Wang, Yue Zheng, Panpan Wang, Liwen Yang, Yang Jin, Hui Wu, Bin Sun

Summary: This study utilizes ethanol as an electrolyte additive to modulate the migration of zinc ions and the surface structure of zinc anodes, resulting in improved capacity retention and cycle life of zinc-based aqueous batteries.

NANO ENERGY (2024)

Article Chemistry, Physical

Ultrathin nanolayer constituted by a natural polysaccharide achieves egg-box structured SnO2 nanoparticles toward efficient and stable perovskite solar cells

Haichao Yang, Wensi Cai, Ming Wang, Saif M. H. Qaid, Zhiyuan Xu, Huaxin Wang

Summary: The introduction of sodium alginate (SA) into perovskite solar cells improves the carrier dynamics, stability, and performance by inhibiting nonradiative recombination and retarded charge dynamics.

NANO ENERGY (2024)

Article Chemistry, Physical

All-in-one multifunctional and deformation-insensitive carbon nanotube nerve patches enabling on-demand interactions

Cuirong Zhang, Mingyuan Wei, Zihan Chen, Wansheng Lin, Shifan Yu, Yijing Xu, Chao Wei, Jinwei Zhang, Ziquan Guo, Yuanjin Zheng, Qingliang Liao, Xinqin Liao, Zhong Chen

Summary: Artificial Intelligence of Things (AIoT) aims to establish smart and informative interactions between humans and devices. However, common pixelated sensing arrays in AIoT applications present problems such as hard and brittle devices, complex structures, and low precision. This article introduces an innovative solution called the all-in-one intelligent semitransparent interactive nerve patch (AISI nerve patch), which integrates sensing, recognition, and transmission functionalities into a thin and flexible patch. The AISI nerve patch is semitransparent, allowing for accurate identification without affecting aesthetics, and it can be attached to any curved surface for intelligent and interactive applications. With rapid response time and high precision recognition, it enables the integration of artificial intelligence and achieves high recognition accuracy for further development of AIoT.

NANO ENERGY (2024)

Article Chemistry, Physical

Engineering anion defects of ternary V-S-Se layered cathodes for ultrafast zinc ion storage

Youcun Bai, Heng Zhang, Huijun Song, Chong Zhu, Lijin Yan, Qin Hu, Chang Ming Li

Summary: A novel stainless-steel supported lattice-mismatched V-S-Se layered compound with high selenium vacancy was synthesized by adjusting the molar ratio of sulfur to selenium. The introduction of selenium vacancies created additional redox peaks of sulfur, providing more mass transport channels and active sites for zinc ions. The specific capacity and cycle stability of the electrode were significantly improved, demonstrating great potential for practical applications and providing insights into the effects of defects on battery performance.

NANO ENERGY (2024)

Article Chemistry, Physical

Defect-management-induced multi-stimulus-responsive mechanoluminescence in Mn2+doped gallate compound

Yao Xiao, Puxian Xiong, Yakun Le, Zhenjie Lun, Kang Chen, Zhiduo Wang, Peishan Shao, Zhicong Chen, Dongdan Chen, Zhongmin Yang

Summary: This study successfully synthesized a material with multi-stimulus-responsive luminescence and confirmed the internal relationship between luminescence and defects by regulating the distribution and depth of defects. The dynamic process of multi-stimulus-responsive luminescence was validated by experimental and calculation results.

NANO ENERGY (2024)