4.1 Article

Mitigation of salt stress damages in Carica papaya L. seedlings through exogenous pretreatments of gibberellic acid and proline

Journal

CHILEAN JOURNAL OF AGRICULTURAL RESEARCH
Volume 82, Issue 1, Pages 167-176

Publisher

INST INVESTIGACIONES AGROPECUARIAS
DOI: 10.4067/S0718-58392022000100167

Keywords

Photosynthetic pigments; plant growth; subtropics

Ask authors/readers for more resources

Salinity is a major threat to agriculture, and papaya is a widely cultivated fruit crop in tropical and subtropical regions. Exogenous gibberellic acid and proline treatments were found to enhance the adaptation of papaya seedlings to salt stress.
Salinity is a serious threat for global agriculture, especially in arid and semi-arid regions where its incidence leads to considerable damages in the crop growth and production. Carica papaya L. is currently one of the most cultivated fruit crops in the tropical and subtropical areas, and generally, papaya cultivars exhibit a moderate sensitivity to salinity, although such responses may depend on the genotypes. In the present study, papaya seedlings were subjected to salt stress (100 mM NaCl) for 41 d and to exogenous gibberellic acid (GA3; 0.1 mM) and proline (10 mM) pretreatments to evaluate plant physiological variables linked to stress responses. Analysis of the data (P < 0.05) showed a general decrease of plant growth parameters induced by solely salt stress compared to control, such as stem height (47%) and thickness (33%) and plant fresh and dry mass (84% and 83%, respectively), as well as a reduction in the stomatal opening (93%), chlorophylls (40%) and carotenoids (71%) concentration. By contrast, a significant increase was found in foliar and radicular proline levels under stress (87% and 47%). Exogenous foliar GA3 or proline respectively induced a better performance of plants under salt stress by increasing stomatal conductance (444% or 350%), stem height (142% or 144%) and plant biomass (49% or 41%) regarding solely stressed plants, and leading to pigments concentrations close to those from control plants. The results suggest that exogenous gibberellic acid and proline as growth regulator and osmo-regulator solute, respectively could increase papaya seedlings adaption against salt stress.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available