4.7 Article

An extended HEART Dempster-Shafer evidence theory approach to assess human reliability for the gas freeing process on chemical tankers

Journal

RELIABILITY ENGINEERING & SYSTEM SAFETY
Volume 220, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.ress.2021.108275

Keywords

Human reliability; D-S evidence theory; Gas freeing process; Chemical tanker

Ask authors/readers for more resources

Human reliability assessment is vital for critical shipboard operations on chemical tankers. This paper proposes a hybrid method that combines HEART and D-S evidence theory to assess human reliability during the gas freeing process. The customized task analysis within a second-generation HEART D-S method is a novel contribution to the maritime industry. The paper provides practical guidance to enhance operational safety and minimize human errors during the gas freeing process.
Human reliability assessment is vital for most critical shipboard operations such as cargo loading, discharging, purging, gas freeing, etc. on chemical tanker ships since the nature of these processes poses significant threats. There are few human reliability studies particularly applied to shipboard operations in the maritime industry. To remedy this gap, the paper assesses human reliability systematically during the gas freeing process on a chemical tanker ship. To achieve this purpose, an extended HEART D-S (Dempster-Shafer) evidence theory approach is utilised. Although HEART (Human Error Assessment and Reduction Technique) presents a practical human reliability assessment tool, it heavily relies on the judgment of a single rater during APOE (assess proportion of effect). The paper adopts D-S evidence theory to remedy the aforementioned gap since it fuses raters' opinions. The first novelty of the proposed hybrid method is the use of customized task analysis for shipboard applications within a second-generation HEART D-S evidence method in the maritime industry. Besides its theoretical background, the paper provides practical contributions to maritime safety professionals, chemical tanker ship owners, and safety inspectors to enhance their operational safety and to minimize the probability of human error during the gas freeing process on board chemical tanker ships.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available