4.6 Article

Interaction of magnetization and heat dynamics for pulsed domain wall movement with Joule heating

Journal

JOURNAL OF APPLIED PHYSICS
Volume 120, Issue 16, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.4966607

Keywords

-

Ask authors/readers for more resources

Pulsed domain wall movement is studied here in Ni80Fe20 nanowires on SiO2, using a fully integrated electrostatic, thermoelectric, and micromagnetics solver based on the Landau-Lifshitz-Bloch equation, including Joule heating, anisotropic magneto-resistance, and Oersted field contributions. During the applied pulse, the anisotropic magneto-resistance of the domain wall generates a dynamic heat gradient, which increases the current-driven velocity by up to 15%. Using a temperature-dependent conductivity, significant differences are found between the constant voltage-pulsed and constant current-pulsed domain wall movement: constant voltage pulses are shown to be more efficient at displacing domain walls whilst minimizing the increase in temperature, with the total domain wall displacement achieved over a fixed pulse duration having a maximum with respect to the driving pulse strength. Published by AIP Publishing.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available