4.8 Article

Metal-Organic Frameworks in Mixed-Matrix Membranes for High-Speed Visible-Light Communication

Journal

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Volume 144, Issue 15, Pages 6813-6820

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jacs.2c00483

Keywords

-

Funding

  1. King Abdullah University of Science and Technology (KAUST)
  2. U.S. Office of Naval Research Global [N62909-19-1-2079, RGC/3/4119-01-01]

Ask authors/readers for more resources

Mixed-matrix membranes based on luminescent metal-organic frameworks and emissive polymers show great potential in high-speed visible-light communication, with the ability to enhance data rates through efficient energy transfer strategies.
Mixed-matrix membranes (MMMs) based on luminescent metal-organic frameworks (MOFs) and emissive polymers with the combination of their unique advantages have great potential in separation science, sensing, and light-harvesting applications. Here, we demonstrate MMMs for the field of high-speed visible-light communication (VLC) using a very efficient energy transfer strategy at the interface between a MOF and an emissive polymer. Our steady-state and ultrafast time-resolved experiments, supported by high-level density functional theory calculations, revealed that efficient and ultrafast energy transfer from the luminescent MOF to the luminescent polymer can be achieved. The resultant MMMs exhibited an excellent modulation bandwidth of around 80 MHz, which is higher than those of most well-established color-converting phosphors commonly used for optical wireless communication. Interestingly, we found that the efficient energy transfer further improved the light communication data rate from 132 Mb/s of the pure polymer to 215 Mb/s of MMMs. This finding not only showcases the promise of the MMMs for high-speed VLC but also highlights the importance of an efficient and ultrafast energy transfer strategy for the advancement of data rates of optical wireless communication.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available