4.7 Article

Fibroblastic SMOC2 Suppresses Mechanical Nociception by Inhibiting Coupled Activation of Primary Sensory Neurons

Journal

JOURNAL OF NEUROSCIENCE
Volume 42, Issue 20, Pages 4069-4086

Publisher

SOC NEUROSCIENCE
DOI: 10.1523/JNEUROSCI.2132-21.2022

Keywords

DRG; fibroblast; mechanical nociception; SMOC2

Categories

Funding

  1. National Natural Science Foundation of China [32071001, 32192413, 31671094, 32030050]
  2. Chinese Academy of Sciences [QYZDYSSW-SMC007]
  3. Special Fund for Science-Technology Innovation Strategy of Guangdong Province [2021B0909050004]
  4. Science and Technology Commission of Shanghai Municipality [18JC1420301]
  5. Innovation Fund for Medical Sciences of Chinese Academy of Medical Sciences [2019-I2M-5-082]
  6. Shenzhen Sanming Project

Ask authors/readers for more resources

This study reveals the important role of fibroblastic SMOC2 in suppressing mechanical nociception by inhibiting the communication of adjacent DRG neurons. SMOC2 interacts with P2X7 receptor and suppresses ATP-induced activation. Peripheral inflammation results in decreased SMOC2 and increased neuronal clusters. This study provides insights into the mechanism of fibroblasts in nociceptive regulation.
Nociceptive information is detected and transmitted by neurons in the DRG. Recently, single-cell RNA sequencing has revealed the molecular profile of various cell types, including fibroblasts in the DRG. However, the role of molecules in fibroblasts needs to be elucidated in nociceptive regulation. Here, we found that secreted modular calcium-binding protein 2 (SMOC2) was secreted by fibroblasts to become a component of basement membrane and envelop the unit consisting of DRG neurons and attached satellite glial cells. KO of Smoc2 in both sexes of mice led to increased neuronal clusters and decreased mechanical threshold, but unchanged noxious thermal response. Knockdown of Smoc2 in the DRG phenocopied the behavioral performance by Smoc2 KO in both sexes of mice. In vivo calcium imaging showed that Smoc2 KO increased coupled activation of adjacent DRG neurons induced by nociceptive mechanical stimuli, which was reversed by DRG injection of SMOC2. Importantly, SMOC2 interacted with P2X7 receptor (P2X7R) and suppressed ATP-induced activation in HEK293 cells expressing this receptor. Injection of A740003, an antagonist of P2X7R, to the DRG reduced coupled activation of adjacent DRG neurons induced by nociceptive mechanical stimuli but did not further enhance the SMOC2-inhibited effect. Furthermore, peripheral inflammation resulted in a decreased SMOC2 and increased neuronal clusters. DRG injection of SMOC2 inhibited the neuronal coupling resulted from peripheral inflammation. This study reveals a specific role of fibroblastic SMOC2 in suppressing mechanical nociception through inhibiting the communication of adjacent DRG neurons, which provides an important mechanism of fibroblasts in nociceptive regulation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available